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Abstract
Purpose  This study aims to explore the impact of ground gradient on gait variability.
Methods  Ten healthy adults (39.3 ± 4.14 years) performed overground walking under three gradient conditions: uphill 10.1° 
(17.81%), − 10.1° downhill (− 17.81%), and level 0.54° (0.95%). Gait kinematics were recorded using inertial measurement 
units, and stride time intervals were evaluated for variability magnitude and temporal structure via Coefficient of Variation 
(CV) and Detrended Fluctuation Analysis (DFA-α). Heart rate was recorded and served as a measure of exertion.
Results  Significant differences in both CV and DFA-α emerged among conditions (p < 0.001). Downhill walking exhibited 
the highest CV (4.67 ± 1.65%) and the lowest DFA-α (0.62 ± 0.13). In contrast, uphill walking showed intermediate values 
(CV: 3.67 ± 0.84%; DFA-α: 0.76 ± 0.09), while level walking displayed the lowest CV (1.98 ± 0.62%) and the highest DFA-α 
(0.84 ± 0.1), demonstrating a parabolic effect of ground gradient with gait variability for both CV and DFA-α. Downhill walk-
ing also elicited faster average velocities (1.57 ± 0.14 m/s) compared to uphill (1.38 ± 0.09 m/s) and level (1.46 ± 0.08 m/s) 
walking.
Conclusion  Interestingly, while uphill walking resulted in the highest heart rate (141.9 ± 13.8 bpm), DFA-α values of stride 
time intervals time series did not differ significantly from level walking, suggesting that metabolic effort may not be associated 
with the temporal structure of gait variability. Overall, it appears that during downhill walking, pronounced neuro-mechanical 
demands, likely imposed by eccentric effort, affect the amount and temporal structure of variability.

Keywords  Variability · Gradient walking · Gait · Complexity · Ground inclination

Abbreviations
OMV: 	� Optimal Movement Variability
DFA: 	� Detrended Fluctuation Analysis
CV: 	� Coefficient of Variation
DOMS: 	� Delayed-Onset Muscle Soreness
IMU: 	� Inertial Measurement Unit
GPS: 	� Global Positioning System
IQR: 	� Inter-quartile Range

STI: 	� Stride Time Intervals
ANOVA: 	� Analysis of Variance
�
2

p
∶ 	� Eta-Squared

Introduction

Human gait is a complex, adaptive process that reflects the 
intricate interplay between the musculoskeletal and nerv-
ous systems. Gait pattern is inherently variable, and it is 
widely acceptable that this variability does not reflect noise 
but carries significant information about the underlying 
motor control strategies and the adaptability of the system 
to environmental demands. Understanding this variability is 
crucial for insights into locomotor function, rehabilitation, 
performance enhancement, and prevention of movement dis-
orders. Gait variability could be evaluated with respect to its 
amount using linear metrics such as the standard deviation 
or the coefficient of variation that reveal deviations around a 
central point, the mean. It can also be evaluated with respect 
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to its temporal structure, using the so-called nonlinear met-
rics (Dierick et al. 2021; Wurdeman and Stergiou 2013). 
The Optimal Movement Variability (OMV) hypothesis (Ster-
giou and Decker 2011) posits that variability is optimized for 
healthy motor function, allowing for adaptability in response 
to changing tasks and environments. Deviations from this 
optimum level can lead to decreased performance and an 
increased risk of injury.

The OMV hypothesis proposes that healthy motor sys-
tems exhibit fluctuations in movement patterns that strike 
a balance between excessive rigidity and excessive ran-
domness, reflecting an adaptable, fractal-like structure that 
enhances resilience (Stergiou and Decker 2011). This behav-
ior is not fixed but varies across the lifespan—developing 
in childhood as sensorimotor exploration refines into sta-
ble yet adaptable patterns (Harbourne and Stergiou 2009) 
and degrading with age or pathology, often manifesting as 
either overly rigid (e.g., Parkinsonian gait) or excessively 
irregular (e.g., ataxic or fall-prone gait) dynamics (Hausdorff 
2009). Detrended Fluctuation Analysis (DFA) quantifies 
this balance through the scaling exponent (α), where val-
ues near ~ 0.8–1.0 in healthy adults gait indicate persistent, 
long-range correlations that support adaptive responses to 
perturbations (Hausdorff 2007; Ravi et al. 2020), yet the 
exact “ optimal” range may shift with task, age, or pathol-
ogy. Large deviations from this range are clinically meaning-
ful: α ≤ 0.5 (uncorrelated randomness) may reflect disrupted 
sensorimotor integration (e.g., cerebellar dysfunction), while 
α > 1.0 (overly rigid patterns) suggests diminished adapt-
ability as seen in Parkinson’s disease (Hausdorff 2009). 
Critically, such deviations compromise system robustness—
overly rigid patterns reduce the capacity to adjust to external 
demands (e.g., uneven terrain), while excessive randomness 
reflects inefficient capacity for adaptability in the impos-
ing constraints (Buzzi et al. 2003; Lipsitz 2002). The OMV 
framework thus posits that fractal scaling reflects an active, 
health-relevant trade-off between stability and flexibility, 
with implications for diagnosing and rehabilitating motor 
deficits (Stergiou et al. 2006). Previous research has dem-
onstrated that a range of factors, including environmental 
conditions, influence gait variability (Kesler et al. 2005; 
Tamburini et al. 2018). For example, walking on uneven 
terrain increases the amount of variability (Kent et al. 2019), 
while walking in varying lighting conditions (near-darkness) 
increases the amount of variability in middle-aged and older 
adults (Huang et al. 2017; Naaman et al. 2023), possibly 
challenging the adaptation capacity of the motor system. 
Another important environmental factor that is often pre-
sent is ground gradient, which changes the mechanical and 
neuromuscular demands of walking and requires different 
motor control strategies (Diedrich and Warren Jr., 1998). 
When walking uphill, the timing and weighting of mus-
cle synergies during the touchdown, mid-stance, and early 

push-off phases are different from when walking on a flat 
surface. This is because the central nervous system has to 
be flexible to meet the different mechanical demands (Jan-
shen et al. 2017; McGowan et al. 2009). Uphill walking is 
characterized by increased activation of hip, knee, and ankle 
extensors, which contribute significantly to body support 
and forward propulsion, with these adaptations becom-
ing more pronounced at faster velocities (Franz and Kram 
2012; McGowan et al. 2009). Conversely, downhill walking 
involves increased muscle activation, particularly in knee 
extensors, along with an increased amount of variability in 
terms of intra-limb coordination and intersegmental dynam-
ics (Dewolf et al. 2020; Franz and Kram 2012). On downhill 
slopes, the contribution of individual joints to total support 
moments shifts, transitioning from ankle-dominated to 
knee-dominated strategies (Hong et al. 2014). These neu-
romuscular adjustments enable the central nervous system 
to modulate motor control elements, aligning them with the 
mechanical demands imposed by the gradient. Research 
has also highlighted the metabolic implications of gradient 
walking, identifying an optimal economical slope at approxi-
mately -10.2%, where the balance of positive and negative 
external work minimizes energy expenditure (Minetti et al. 
1993). Therefore, it appears that the neuromuscular system 
adapts to different slopes, adjusting coordination and effort 
to accomplish the task.

However, less is known regarding the effects of gradient 
walking on the magnitude and the temporal structure of gait 
variability. Specifically, we found only three studies partially 
related to this research question. Hunter et al. (2010) exam-
ined the trade-off between energetic cost and stability during 
downhill walking on slopes of 0, 0.05, 0.10, and 0.15 gradi-
ents at 1.25 m/s. They found that when subjects adopted a 
relaxed walking strategy, allowing gravity to take the lead, 
energetic cost decreased. However, the amount of variability 
of stride time (a stability indicator, per the authors) increased 
on the steeper slopes. Yet when they used their normal pre-
ferred walking speed, they prioritized stability over mini-
mizing energetic cost, even at the expense of higher energy 
expenditure (Hunter et al. 2010). A more recent study (Jones 
et al. 2024) found that during running stride time, DFA-α 
displayed a moderate decrease during downhill running com-
pared to uphill running. They also found that both the amount 
and temporal structure of variability were influenced more by 
the gradient (uphill vs. downhill) rather than by the elapsed 
exercise duration. So, they claimed that changes in variability 
between and within runs should be understood in the context 
of course elevation profiles before any health conclusions are 
made. Notably, Vieira et al. (2017) evaluated 49 healthy young 
adults walking on treadmill inclines of ± 6%, ± 8%, and ± 10% 
and reported that trunk‐acceleration variability increased sig-
nificantly in medial–lateral, anterior–posterior, and vertical 
directions during both uphill and downhill conditions; that 
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local dynamic stability (maximum Lyapunov exponent, λₛ) was 
reduced on all inclines—with the greatest λₛ values uphill—
and margin of stability (MoS ML) decreased downhill; and 
that gait regularity (sample entropy) decreased almost linearly 
from downhill to uphill slopes, indicating a progressive loss 
of regularity with steeper gradients. Taking everything into 
account—one study examined running, while the others evalu-
ated the amount of variability, local stability and regularity on 
a downhill gradient—it appears there is still a knowledge gap 
that needs to be addressed regarding the effects of gradient 
walking on the magnitude and the temporal structure of gait 
variability especially on natural overground conditions.

Addressing this knowledge gap is crucial for multiple 
reasons. It could provide insights into neuromuscular con-
trol and how the body adapts to a specific environmental 
constraint, aid in the early detection of subtle motor impair-
ments, often amplified by the biomechanical demands of 
gradients, and offer a more profound understanding of loco-
motor efficiency and fatigue. It could also be used in reha-
bilitation to help tailor treatments to each patient based on 
how they react to gradient walking. It could also be very 
important in preventing falls by finding patterns of instabil-
ity, especially in older adults or people who have trouble 
moving around. Finally, it can inform the design of assis-
tive devices and rehabilitation technologies, enhancing 
their adaptability to varied terrains (Zignoli et al. 2023). 
The above rationale highlights the critical importance of 
addressing this research question.

Therefore, the present study aims to investigate how 
ground gradient affects gait variability in a natural, uncon-
trolled outdoor environment. We used DFA-α to examine the 
temporal structure of variability and the stride time coeffi-
cient of variation (CV) to examine the magnitude of variabil-
ity. This work will help us to further explore the relationship 
between environmental demands, motor control strategies, 
and movement adaptability under different walking condi-
tions. Additionally, this study aims to understand how these 
changes in gait variability align with the OMV hypothesis. 
Therefore, we hypothesized that downhill and uphill walk-
ing will lead to altered gait variability compared to natural 
ground walking, due to increased mechanical demands that 
affect neuromuscular control strategies. Speed and heart rate 
were also evaluated between conditions for physiological 
comparisons.

Methods

Participants

Ten healthy adults (3 females, 7 males) with the follow-
ing descriptive characteristics (mean ± standard deviation): 
age 39.3 ± 4.14 years, height 178.1 ± 8.19 cm, and weight 

82.0 ± 10.4 kg voluntarily participated in the study. Inclusion 
criterion was an age range of 30 to 45 years as individuals in 
this group are generally active and less likely to exhibit age-
related declines that could confound the study’s outcomes. 
Exclusion criteria included serious injuries and lower limb 
or spine surgery, neurological, pulmonary, cardiovascular, 
and other diseases or drugs affecting balance or gait, preg-
nancy, alcohol or drug consumption 12 h before measure-
ment, and medium or severe physical activity that could 
have induced delayed onset muscle soreness (DOMS) 48 h 
prior to measurement. The research was approved by the 
Ethics Committee of the University (ΕC-12/18–5-2020) and 
conducted in accordance with the Declaration of Helsinki. 
Informed written consent was obtained from all participants 
included in the study.

Experimental protocol

Participants wore sports clothes and their own comfort-
able sports shoes. They were instructed to walk an asphalt 
course of 896  m with an average inclination of 10.1° 
(17.81%, Fig. 1) at a preferred walking speed, maintaining 
a stable pace and refraining from stopping during the trial. 
Inclination data were obtained by performing three meas-
urements on different trajectories along the width of the 
course (896 m) using a digital inclinometer (DOT, Movella, 
Enchede, NL) sampling at 75 Hz and the average value of 
these measurements is reported above. Gait assessment was 
conducted outdoors on three inclinations: uphill, downhill, 
and level. For the level walking condition, a different course 
was selected with a length of 1100 m and an average inclina-
tion of 0.6° (1.05%). The participants completed the tasks 
in a randomized order, with at least a 10-min rest period 
between each condition. It is important to report that all 

Fig. 1   Inclination profile of the course where uphill and downhill 
walking tests were performed. Dashed line represents the average 
value and shaded area ± 1 standard deviation. The average value is 
represented as a line for esthetic reasons although it is a discrete value 
and lacks time dimension
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participants consistently initiated their walks (data collec-
tion) from the same position on the route and traversed along 
the same lane for each walk to ensure methodological con-
sistency and reliability. To ensure recovery, we confirmed 
that the heart rate returned to baseline before initiating the 
next walk after the uphill task.

Instrumentation

Lower extremity kinematics were quantified using a wire-
less Bluetooth, 9-degree-of-freedom inertial measurement 
units—IMUs (k-Sens [now K-Move]), Kinvent, Biomecha-
nique, Montpellier, France) with a 1000 Hz sampling fre-
quency. This sensor has been successfully used in other stud-
ies (Chalitsios et al. 2024). Gait speed was recorded using 
a GPS unit (Samsung Galaxy no. 205–006142) sampling 
at 20 Hz, which was strapped to the upper arm of each par-
ticipant. The IMU sensor was attached to the lower right 
foot (same for all participants), specifically at the metatarsal 
region, using a special case that utilized the shoelaces for 
attachment and further secured with tape wrapped around 
the shoe to minimize movement. We also used a Polar H10 
(Polar Electro Oy, Kempele, Finland) heart rate sensor to 
continuously monitor heart rate. All three measurement sys-
tems (IMUs, GPS, and Polar heart rate sensor) were syn-
chronized using a Bluetooth-based start trigger via a custom 
control app. Before each trial, devices were paired to the 
app, and pressing a single ‘Start’ button sent a simultaneous 
command to initiate data logging. Each device recorded a 
timestamped flag upon trigger reception, enabling precise 
post hoc alignment. Despite differing sampling rates (IMUs: 
1000 Hz, GPS: 20 Hz, Polar: 500 Hz), this method reliably 
synchronized data streams within the measurement window.

Data pre‑processing and analysis

We applied no filtering to the accelerometer to maintain the 
nonlinear dynamic properties of the recorded time series 
(Rapp et al. 1993; Theiler and Eubank 1993). We measured 
the time between two consecutive foot strikes of the same 
foot using a peak-to-peak algorithm on the largest part of the 
acceleration signal. We used this method to determine the 
inter-stride intervals (ISI). Thereafter, each time series was 
explored for outliers using Tukey’s rule, in which any data 
point that fell ± 1.5, the inter-quartile range (IQR) is consid-
ered one. We found no outliers. To quantify the magnitude 
of stride-to-stride variability, we used CV =

�

�
  where σ 

stands for standard deviation and μ for mean. We used 
Detrended Fluctuation Analysis (DFA) to determine the 
exponent for the stride time intervals (STI) time series. The 
DFA algorithm (Peng et al. 1995) integrates a time series, 
divided into window sizes of length n. In each window, a 

least squares line of best fit is calculated. The data are then 
detrended by subtracting the integrated time series from the 
least squares line. We then calculate the root mean square 
for each window to determine the fluctuation magnitude and 
sum it for the entire time series, F(n). We repeat this process 
for a range of window sizes to determine the associated mag-
nitudes of fluctuation for each window size. Next, we plot 
the log F(n) against log n (the root mean square) in relation 
to the window sizes. The slope of this line is the α-scaling 
exponent. When the values of α are  > 0.5, they indicate a 
persistent long-range correlation. A bin size range of [4, 
N/4] was used for the DFA in the present study, which is 
standard practice when using DFA (Damouras et al. 2010). 
To ensure consistent results across conditions, we selected 
the last 525 steps from each trial, starting from the trail’s end 
and counting backward (Fig. 2). This number represents the 
fewest steps taken by any study participant in any of the 
three tasks, after excluding the first and last 5 steps to 
account for initial acceleration or deceleration. The range of 
the strides was 535 to 580 for the downhill, 547–595 for the 
uphill, and 539–589 for the level condition.

To ensure consistency across conditions, we standardized 
the number of strides analyzed by setting n to 525 strides 
(counting from the trial end and backwards). This approach 
allowed for a uniform comparison of DFA-α values across 
different walking conditions, ensuring that each participant’s 
data was evaluated on an equal footing regardless of the 
terrain.

Statistical analysis

Descriptive statistics are presented as the mean and standard 
deviation. One-way repeated measures ANOVA was per-
formed between the three conditions (uphill, downhill, and 
level) for the dependent variables; CV and DFA-α. In cases 
where the assumption of sphericity was violated, the Green-
house–Geisser correction was applied. The analysis was 

Fig. 2   Raw stride time series for a representative subject across the 
different inclinations (uphill, downhill, or level walking)
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performed after verifying that the distribution of the vari-
ables did not differ significantly from the normal distribution 
according to the Shapiro–Wilk test. We quantified effect size 
using partial eta-squared ( �2

p
 ), interpreting the thresholds 

as follows: small effect (0.01), medium effect (0.06), and 
large effect (> 0.14). Post hoc analysis was performed to 
examine pairwise differences using a Bonferroni correction. 
This study was designed to ensure adequate statistical power 
based on a priori considerations. Specifically, our sample 
size was selected in accordance with the power analysis lit-
erature for DFA in gait variability studies. This literature 
demonstrates that for within-subject designs, sample sizes 
in the range of our study are sufficient to detect meaning-
ful effects with a high probability (power > 0.80) (Kuznet-
sov and Rhea 2017). This sample size was determined to 
be both scientifically appropriate and practically feasible, 
reflecting the significant logistical demands of conducting 
instrumented gait analysis across three distinct conditions 
in an outdoor environment. To supplement this, a post hoc 
sensitivity analysis was conducted using G*Power (version 
3.1.9.6). For a large observed effect size (ηp

2 = 0.7) and a 
significance level of α = 0.05, this analysis confirmed that 
the achieved statistical power was 0.97 (97%), underscoring 
the high sensitivity of our study to the detected effects. All 
statistical analyses were performed using R (version 4.3.1, 
R Foundation for Statistical Computing, Vienna, Austria).

Results

The average stride time intervals were for uphill: 
1001.34 ± 134.72 ms, level:1035.4 ± 47.97 ms and down-
hill: 914.6 ± 92.87 ms. The average speed was significantly 
different between conditions (F2,18 = 12.69, p < 0.001, �2

p
 = 

0.58). Post hoc analysis further revealed significant dif-
ferences between downhill (1.58 ± 0.14  m/s) and level 
(1.46 ± 0.08 m/s) as well as between downhill and uphill 
(1.38 ± 0.09 m/s) walking (Fig. 3). There were no differences 
between level and uphill walking. Recorded heart rate was 
also significantly different between conditions (F2,18 = 67.93, 
p < 0.001 and �2

p
 = 0.88). Post hoc comparisons revealed 

significant differences between uphill (141.9 ± 13.8 bpm) 
and downhill (106.4 ± 6.6 bpm) and between uphill and 
level (102.9 ± 4.9 bpm) walking. There were no differences 
between level and downhill walking (Fig. 3).

Regarding the magnitude of variability, that was evaluated 
with the stride time coefficient of variation (CV), we found 
significant differences between conditions (F2,18 = 12.43, 
p < 0.001 with a large effect size ( �2

p
 ) of 0.58). Post hoc anal-

ysis (Fig. 4) revealed significant differences for all compari-
sons. Specifically, we found significant differences between 
downhill (4.67 ± 1.65%) and level walking (1.98 ± 0.62%), 
uphill (3.67 ± 0.84%) and level walking, as well as between 
downhill and uphill walking.

Regarding the temporal structure of variability, that 
was evaluated with the DFA-α, we found significant dif-
ferences between conditions (F2,18 = 23.31, p < 0.001 with 
a large effect size ( �2

p
 ) of 0.72). Post hoc comparisons 

(Fig. 4) revealed significant differences between downhill 
(0.62 ± 0.13) and level walking (0.84 ± 0.1), and between 
downhill and uphill walking (0.76 ± 0.09). No significant 
differences were found between level and uphill walking.

Fig. 3   Distributions of the 
speed and heart rate for the 
different walking conditions. 
Statistically significant differ-
ences between conditions are 
shown with the black horizontal 
lines and asterisks
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Discussion

The present study investigated how ground gradient affects 
gait variability in a natural, uncontrolled outdoor environ-
ment. We employed DFA-α for assessing the temporal struc-
ture of variability and utilized the stride time coefficient of 
variation (CV) to evaluate the variability’s magnitude. Addi-
tionally, this study investigated how any possible changes 
in gait variability align with the OMV hypothesis. There-
fore, we hypothesized that downhill and uphill walking will 
lead to altered gait variability compared to natural ground 
walking, due to increased mechanical demands that affect 
neuromuscular control strategies. We also evaluated speed 
and heart rate between conditions for physiological com-
parisons. CV and DFA-α showed a U-shaped pattern across 
conditions, with CV the highest during downhill walking, 
intermediate during uphill, and the lowest on level walk-
ing, with all differences significant. DFA-α was the lowest 
downhill and the highest on level ground, with no significant 
difference between uphill and level walking. The heart rate, 
which indicates exertion, was the highest uphill, while the 
speed was the greatest downhill.

Our results for level walking regarding the DFA-α were 
comparable to normative healthy values reported in the 
literature (threshold of 0.82, CI: 0.72—0.92) (Ravi et al. 
2020). These findings are consistent with the Optimal Move-
ment Variability Hypothesis, which suggests that healthy 
motor systems operate within a specific variability range 
that supports adaptability and efficiency (Stergiou et al. 
2006). While deviations from this range, toward excessive 
randomness or rigidity, have been associated with impaired 
function in clinical populations, we emphasize that in our 
healthy cohort, such deviations, particularly during down-
hill walking (0.62 ± 0.13), do not imply dysfunction but 
rather reflect the increased neuromuscular and mechanical 

demands imposed by the task. DFA-α values approaching 
0.5 (uncorrelated white noise) during downhill walking sug-
gest a shift toward less-structured variability, indicative of a 
more challenging control state (Dotov et al. 2017; Hausdorff 
et al. 1997). This is consistent with prior findings show-
ing that downhill locomotion due to its gravitational and 
eccentric load characteristics, imposes unique demands on 
the neuromuscular system (Dewolf et al. 2020; Franz and 
Kram 2012). While level and uphill walking preserved the 
fractal structure of gait dynamics, the observed changes in 
downhill conditions may have important implications for 
populations with reduced neuromuscular capacity. Nonethe-
less, we recognize that without accompanying functional or 
health-related measures, interpretations regarding the opti-
mality or functional implications of these changes should be 
made cautiously and warrant further investigation.

Importantly, there was also an increase in the self-
selected speed during downhill walking. Gottschall and 
Kram (2006) in their study indicated that the increased brak-
ing impulses reduce the magnitude of the upward motion of 
the center of mass (ascents) while amplifying the downward 
motion (descents). So, the gravitational pull, coupled with 
the braking forces, minimizes the need for active propul-
sion and thus allows the body to take advantage of gravity 
as a primary driving force, akin to passive walking, which 
likely results in the observed increase in speed compared to 
level or uphill walking. At the same time, downhill walking 
imposes greater mechanical demands on lower limb joints 
compared to level walking (Hong et al. 2014) and requires 
distinct muscle recruitment strategies, primarily involving 
the knee extensors (Franz and Kram 2012). As the down-
hill grade increases, posterior pelvic tilt and lateral trunk 
bending toward the stance limb increase, along with peak 
dorsiflexor and extensor moments at the ankle and knee, 
respectively (Hong et al. 2014). Notably, downhill walking 

Fig. 4   Distributions of the CV 
and DFA-α for the different 
walking conditions. Statistically 
significant differences between 
conditions are shown with 
the black horizontal lines and 
asterisks
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elicited the lowest DFA-α despite not having a significant 
difference in heart rate compared to level walking. There-
fore, these findings suggest that the temporal structure of 
variability may be primarily under neuro-mechanical con-
trol, rather than metabolic control, in response to various 
environmental demands. This is emphasized by the lack of 
significant differences in the DFA-α between uphill and level 
walking, while the heart rate increased in uphill walking.

Regarding the magnitude of variability, our results for CV 
are similar to previous studies that reported stride time CV 
values below 6% during preferred-speed level overground 
walking in healthy adults aged 21–47 years (Beauchet et al. 
2009; Gabell an Nayak 1984). The significantly increased 
CV values for downhill and uphill walking in comparison 
with level walking do not agree with the linear decrease in 
speed and the linear increase in heart rate with increased 
grade. Given that metabolic cost is primarily influenced by 
positive ground gradients with a highly linear increase (Jef-
fers et al. 2015; Jessup et al. 2023; Minetti et al. 1993), it 
is unlikely that the increased CV values observed during 
downhill walking are driven by any difference in metabolic 
cost. Instead, the heightened mechanical and neuromuscu-
lar demands encountered when walking downhill primarily 
drove this increase. Interestingly, uphill walking affected 
CV values but not the DFA-α. This shows that the magni-
tude and temporal structure of variability could be affected 
diversely from metabolic demands. This further emphasizes 
the need in future studies of variability to incorporate both 
aspects, magnitude, and temporal structure.

These findings have practical implications for rehabilitation 
and training. For example, uphill walking, which preserves 
fractal organization (1/f noise), could be a safer option for 
improving lower limb strength and cardiovascular endurance 
without significantly disrupting stride consistency, making it 
suitable for populations with limited neuromuscular control. In 
training, the dissociation between metabolic cost and gait vari-
ability offers opportunities for targeted interventions. Downhill 
walking, despite its lower metabolic cost, imposes significant 
neuro-mechanical demands, making it valuable for enhanc-
ing neuromuscular coordination and eccentric strength. Care-
ful consideration is needed when selecting a downhill slope 
according to the OMV hypothesis, which posits a ‘sweet spot’ 
where sufficient eccentric demand fosters beneficial adapta-
tions—like enhanced neuromuscular coordination—without 
exceeding thresholds that increase randomness in gait vari-
ability. Loss of fractal complexity (e.g., reduced DFA-α) may 
diminish performance benefits and elevate injury risk. Thus, 
moderate slopes can enhance adaptations, but excessive gradi-
ents that drive variability into randomness are likely counter-
productive for most individuals. Uphill walking, on the other 
hand, provides a more stable and metabolically demanding 
option for improving cardiovascular fitness and strength 
without compromising stride consistency. While our findings 

highlight altered neuromuscular coordination (Ihlen and Ver-
eijken 2010; Ting et al. 2015) during downhill walking, we 
refrain from attributing these changes solely to supra-spinal 
mechanisms without direct neurophysiological measurements. 
Future work combining DFA-α with EEG/EMG could disen-
tangle these levels of control.

This study is novel for its application of overground walk-
ing conditions to investigate variability across different ground 
gradients. Overground walking more accurately reflects natural 
locomotor behavior compared to treadmill-based studies, as 
it includes environmental variations and natural gradients. In 
addition to studying the effect of ground gradient in a natural 
environment, an approach that we believe enhances the eco-
logical validity of the findings and provides insights into real-
world walking dynamics, a key methodological strength of this 
study is the inclusion of a sufficient number of strides to satisfy 
the theoretical assumptions required for reliable DFA-α esti-
mation. By analyzing a standardized minimum of 525 strides 
per participant across all conditions, this study adhered to 
established guidelines for ensuring robust and reliable esti-
mation of DFA-α (Kuznetsov & Rhea 2017; Marmelat and 
Meidinger 2019). This approach addresses a common limita-
tion in gait variability research, where insufficient stride counts 
may lead to less reliable conclusions. The adherence to these 
methodological standards ensures the robustness of the results 
and contributes to the reliability of DFA metrics for future 
investigations in similar contexts.

Nevertheless, our findings come with certain limitations, 
one of the most interesting being the potential role of lower 
limb eccentric strength. Considering that downhill walk-
ing substantially increases eccentric demands to counteract 
gravity, it is plausible that individuals with higher eccen-
tric strength might show minimal changes in gait variabil-
ity despite walking on a negative gradient. In other words, 
stronger individuals could be more resistant to the destabi-
lizing forces associated with downhill walking, maintain-
ing a more consistent stride pattern. Future research should 
investigate how eccentric strength influences gait variabil-
ity across various gradients, offering clearer insights into 
inter-individual differences in neuro-mechanical adaptations. 
Additionally, examining whether manipulating stride fluc-
tuations (i.e., sensory feedback Raffalt et al. 2023; Vaz et al. 
2019)) can modify DFA-α in gradient conditions represent 
an intriguing avenue for further exploration, as it may pro-
vide valuable information on how external cues influence 
the fractal properties of gait.  

Conclusion

This study highlights the distinct adaptations to varying 
ground gradients, showing that downhill walking disrupts 
stride consistency probably due to increased eccentric 
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demands, while uphill walking, despite its higher metabolic 
cost, maintains a more stable temporal structure of gait. The 
differences between the magnitude and temporal structure 
of variability regarding uphill walking highlight the need 
to incorporate both types of metrics in future studies of 
variability. Practical applications include utilizing down-
hill walking to enhance neuromuscular coordination and 
eccentric strength while considering its stability challenges 
and leveraging uphill walking for strength and endurance 
training with minimal disruption to gait consistency. Future 
research should explore individual differences in eccentric 
and concentric strength and environmental influences on gait 
variability to further refine our understanding of locomotor 
adaptations.
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