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ABSTRACT

The objective of the present study was to examine the sensitivity of several movement variables
during running to exhaustion adopting a cross-sectional design. Thirteen recreational runners,
that systematically trained and competed, performed an exhaustive running protocol on an
instrumented treadmill. Respiratory data were collected to establish the ventilatory threshold in
order to obtain a reference point regarding the gradual accumulation of fatigue. A machine
learning approach was adopted to analyse a set of 29,650 data points (individual steps) of
kinetic and kinematic data, using a random forest classifier for the region pre and post the
ventilatory threshold. The overall accuracy of the model was 0.914 (95% Cl: 0.907-0.919). The
four most important variables, and more sensitive in predictive ability, as it was concluded from
the variable importance procedure and the partial dependence (PD), were the angular range in
AP axis of upper trunk C7, the maximum loading rate, the angular range in LT axis of the C7
and the maximum value of the ground reaction force. Two-dimensional PD revealed
considerable interactions for certain areas of the joint distributions between kinetic and
kinematic data. These results provide a direction towards understanding the interconnections of
kinetics and kinematics of the torso to maintain the coordinated running pattern under fatigue
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conditions.
Highlights:

e Trunk frontal plane kinematics is the most sensitive parameter to fatigue. Practitioners should

consider this finding during endurance training.

e Kinetics exhibit a stable linear increase in mean values but a non-linear increase in variance
during an exhaustive incremental treadmill run. This may affect training at a submaximal

fatigued state.

o Specific areas in the joint distributions of kinetics and kinematics during treadmill running

exhibit increased sensitivity in predicting fatigue state.

1. Introduction

Resistance to fatigue is a key issue in endurance running
for both recreational and elite runners. The term fatigue
is often used to define the decline in various objective
measures of performance over a discrete period of
time (Abbiss, Peiffer, Meeusen, & Skorski, 2015; Enoka
& Duchateau, 2016). Running in a fatigued state intro-
duces technique alterations that in the long term may
lead to musculoskeletal injury (Clansey, Hanlon,
Wallace, & Lake, 2012). Fatigue identification is usually
performed by monitoring various physiological indices.
Numerous fatigue thresholds have been proposed in
the literature such as the ventilatory threshold, the res-
piratory compensation point, the heart rate deflection
point, the critical power physical working capacity at
the fatigue threshold and the electromyographic
fatigue threshold. All these parameters can estimate

physical exertion, indicating fatigue and non-fatigued
work production (Devries et al., 1987; Kumagai et al.,
1982). Fatigue detection, along with the study of the
key parameters of performance that are affected
during endurance running, are of paramount impor-
tance for the planning of training.

Duration of effort and intensity are the two main
effectors modulating the various metabolic processes
that take place during continuous prolonged exercise.
Metabolic transitions from aerobic energy production
to more anaerobic denotes the start of a state where
the accumulation and detection of fatigue are more
likely to be observed (Wasserman, Whipp, Koyl, &
Beaver, 1973). This is a multifactor phenomenon (Stir-
ling, Tscharner, Fletcher, & Nigg, 2012), not only meta-
bolic or neuromuscular but also mechanical in nature,
as the presence of fatigue modifies running biomecha-
nics (Derrick, Dereu, & McLean, 2002). Many movement
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variables change, but not all of them exhibit the same
sensitivity when running in a fatigued condition
(Martens, Deflandre, Schwartz, Dardenne, & Bury, 2018).

Fatigue is an influential factor for lower extremity and
trunk mechanics during running. With fatigue imposing
adverse effects in neuromuscular function, an expected
reduction in the transfer of mechanical energy during
the function of the stretch-shortening cycle can occur
(Mizrahi, Verbitsky, & Isakov, 2000a, 2000b) along with
a decrease in muscle reaction times (Mizrahi, Verbitsky,
& Isakov, 2001). Moreover, fatigue effects on trunk kin-
ematics were found in the literature. Trunk flexion and
extension in the sagittal plane was different in a group
of recreational runners pre and post the implementation
of fatiguing running protocol (Koblbauer, van Schooten,
Verhagen, & van Dieén, 2014). Fatigue obscures the ath-
letes’ effort to maintain optimal angular displacements,
as the stance phase becomes more variant during
exhaustive running (Garcia-Pinillos et al., 2020).

Several studies determined fatigue during incremen-
tal running protocols as the point that breaks the linear-
ity between the dependent and the independent
variable, using physiological or EMG data. Researchers
used the integrated EMG and exercise intensity,
(Nagata, Muro, Moritani, & Yoshida, 1981) or tried to
establish a fatigue threshold based on a significant
increase in the magnitude of the integrated EMG at a
given running intensity (Hanon, Thépaut-Mathieu, &
Vandewalle, 2005). Moreover, recent studies tried to
identify physiological or electrophysiological thresholds
using machine learning (Miura et al., 2020; Zignoli et al.,
2019)

Nevertheless, little is known about how the gradual
increase in exercise intensity and consequently fatigue
affects running mechanics and if any interactions are
developed in order to maintain the co-ordinated
running pattern. It is possible that kinematic features,
like segmental angular velocities or displacements, and
force characteristics like rate of force development of
impact forces, are sensitive and may interact as a
runner shifts away from the steady metabolic state.

It is logical to expect that increasing running intensity
will affect various biomechanical parameters. Indeed,
the pattern of running mechanics that takes place at
faster or slower speeds interacts with the impact
forces, fatigue and metabolic performance of the
motion (Schubert, Kempf, & Heiderscheit, 2014). Yet, it
is unknown to what extent or direction (specific
pattern) this is happening.

The primary purpose of the current study was to map
the structure of change in the biomechanical character-
istics of running, using a physiological threshold as a cri-
terion to identify the decline in measures of

performance during increasing running intensity. The
secondary aim was to create a model that can accurately
classify biomechanical parameters in a fatigue class and
account for possible interactions between the predictor
variables. Such a model could be a valuable tool for ath-
letes and coaches to effectively guide training.

2. Methods

Thirteen male recreational runners (age =37.84 +4.53
years, height=178.15+537cm, weight=78.85%+
6.89 kg) voluntarily participated in the study. Partici-
pants were healthy and free of any neuromuscular or
musculoskeletal disorders and had at least three years
of systematic training and participation in races longer
than 10 km. The research was approved by the univer-
sity’s Ethics Committee (EH-12/2020).

Kinematics, kinetics and gas exchange were collected
during an incremental running to exhaustion test on a
ramp treadmill (Impulse RT700, UK). Measurements
took place between 14:00 pm and 18:00 pm. The day
before testing, participants performed a five-minute
slow run wearing the measuring equipment for familiar-
isation purposes. Prior to testing, an eight-minute light
warm-up at a self-comfort velocity followed by 5 min
of dynamic stretching took place. The main running
test started with a velocity equivalent to 85% of each
athlete’s 10 km tempo, which was approximately
between 2.5 and 3.61 m/s for all individuals. After the
first stage, an increase in the workload of 0.28 m/s was
performed every 3 min until the participant reached
exhaustion, becoming unable to keep the increase in
workload and voluntary interrupted the procedure. Res-
piratory data were obtained from a portable breath-by-
breath gas analyzer (PNOE, ENDO Medical, Palo Alto, CA).

The treadmill was fixed on top of a dual force plate
system (k-Delta, K-Invent Biomechanique, Montpellier,
France) that measured the ground reaction force data
(VGRF) with a sampling frequency of 516 Hz. Also, a
pair of USB connected, 6 DoF IMU; (k-sens, K-Invent Bio-
mechanique, Montpellier, France) with 218 Hz sampling
frequency, provided kinematic information about the
torso. The minimum detectable step (raw accuracy) for
the IMU sensors was 4 mg/LSB (Least Significant Bit)
for the accelerometer, and 0.06°/s for the gyroscope.
One sensor was mounted over C7 and the other over
L5. Both systems (force-plates and IMU,) were internally
synchronised.

A second-order low pass Butterworth filter with cut-
off frequency of 30 and 15 Hz was used for filtering
the kinetic and kinematic data respectively. All kinematic
and force data variables represented discrete values
extracted from every step (Table 1). Respiratory data



Table 1. List of extracted features.
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Abbreviation Feature Unit
GRFpeak Peak force value per contact Nkg™'
RTiru, RTmou, RTapu Angular range around the three axes of motion (C7) RT 7, =vertical rot, RTyp, =flex/ext, RTap, =lateral flex/ext deg
hotal Total impulse Ne
RTi110, RTmbIo, RTAPIo Angular range around the three axes of motion (PSIS) RT 1, = rotation-vertical, RTypo = flex/ext, RTapi, = lateral flex/ext deg
RFDmaxp Maximum value of rate of force development until GRFpe.x kN-s~"
RFD,yvgp Average value of rate of force development until GRF . KN-s~"

(O,, CO, and VE curves) were smoothed using a moving
average filter with a window of 11 breaths. Two experi-
enced independent researchers examined the VE/VO,
and VE/VCO, curves to identify the ventilatory threshold
that is closely related to the increase of anaerobic pro-
cesses. Specifically, an over proportional increase of VE
vs. VCO, output (VE/VCO,) was used to define the venti-
latory threshold (anaerobic threshold) (Meyer, Lucia,
Earnest, & Kindermann, 2005). Their mean estimation
was set as the time point that divides the data into
two conditions: before and after fatigue initiation.
Twenty seconds were removed pre and post the
selected point. Since different number of stages were
completed from every runner, a backward selection of
the last five stages was adopted for everyone, so all
stages represented the same magnitude of physical
exertion (Figure 1(a,b).

Afterwards, the dataset was searched for outliers. A
point was considered as an outlier if its value fell out
of +3 standard deviations away from the local mean
over a length specified by a three-minute window, sym-
metrically expanding from both sides of it. In such case,
the point’s value was replaced with the nearest non-
outlier point. For all the participants, the percentage of
the outliers was less than 1% of their respected
dataset. Finally, a 29,650x10 matrix was created with
rows representing every individual step for each of the
participants and columns the measured features.

An ensemble robust against over-fitting classification
algorithm, called Random Forest (RF; Breiman, 2000),
was built to create a classification model that would dis-
tinguish instances before and after the point of a venti-
latory threshold. RF creates multiple decision trees that
are trained on random subsets selected with bootstrap
aggregation from the training dataset, a procedure
that diversifies the trees. During the model built up,
each time a split in a tree is computed, a random
sample of m predictors is selected from the whole set
of predictors (independent variables or features). This
loop ends when out-of-bag (OOB) error is minimised.
Typically, this kind of classifier produces better results
in terms of accuracy among other machine learning
algorithms, with reasonable computational time
reduction. RF also accounts for complex non-linear inter-
actions among predictors and returns a variable

importance score which can be used to rank the features
according to their contribution over predicting the
response variable. The RF algorithm was developed
and deployed with the “randomForest” library (Liaw &
Wiener, 2002).

Validation of the results was checked by splitting the
data into training (70%) and testing (30%) sets. The
“mtry” (m predictors randomly sampled as candidates
at each split) parameter was set to the default value
(v/m ). The “ntree” (number of trees to be grown by
the model) parameter was set to 150 as this value was
low enough not to overgrow the forest and, at the
same time, provided a low OOB error. Nevertheless,
before going forward with the selected values for the
parameters “mtry” and “ntree”, multiple “for” loops
were built to exhaustively search for different parameter
results and validated against grid search as described in
the “caret” R package (Kuhn & Johnson, 2013).

To interpret the model results, the following method
was used. First, the feature importance was calculated, a
procedure which is defined as the increase in the
model’s prediction error after we permuted the values
of the features (break the relationship between the
feature and the outcome) (Breiman, 2000). A feature is
considered important if permuting its values will end
up increasing the misclassification error (degrade the
performance). The built-in function importance was
used to assess how important each feature of the
model was in predicting the outcome.

Secondly, partial dependence plots (PDP) were used
to show the marginal effects of each feature on the pre-
dicted target variable (Friedman, 2001). Also, Friedman'’s
H-statistic (Friedman & Popescu, 2008) was computed to
assess the strength of interactions between predictors.
Finally, two-dimensional PDP was used for visualising
interactions. Statistical analysis and RF implementation
were performed with R v3.6.1 (R Foundation for Statisti-
cal Computing, Vienna, Austria).

3. Results

Model’s performance was assessed using accuracy, sen-
sitivity, specificity and Cohen'’s kappa coefficient (Kuhn &
Johnson, 2013). All 10 predictors passed on the final
model. The model reached a testing set accuracy value
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Figure 1. (a) RTap, data as function of step count (upper panel) and the data distribution for each stage (lower panel) for a single
individual (1). (b) RTp, data as function of step count (upper panel) and the data distribution for each stage (lower panel) for a

single individual (2).

of 0.914 (95% Cl: 0.907-0.919) with sensitivity, specificity
and kappa values at 0.93, 0.89 and 0.82, respectively
(Table 2).

Variable importance ranked the selected features
according to their value for the model, to predict the
state above the ventilatory threshold. The four most
influential variables were RTap, RFDmaxp, RTiry and

GRFpeak (average reduction in accuracy: 0.142, 0.102,
0.087 and 0.074, respectively).

PDPs were used after the identification of the most
relevant features to understand the underlying relation-
ship between each variable and the predicted outcome
of the model (Figure 2). The black line in Figure 2 shows
the partial dependence (PD) for the post ventilatory
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Table 2. Descriptive statistics, mean-SD and median-IQR for every stage.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Mean Median Mean Median Mean Median Mean Median Mean Median
(+1SD) (IQR) (+1SD) (IQR) (+1SD) (IQR) (+1SD) (IQR) (+1SD) (IQR)
GRFpeak 25.1(3.23)  24.5(4.21) 26(3.5) 25.2(4.99) 26.8(3.75)  25.9(5.51) 27.9(4.49)  26.6(5.93) 29.8(5.76)  27.9(8.4)
(N-m™)
RFDmaxp 60.07 59.35(23.4) 65.27 65.19 71.45(19.8) 7138 78.71(22.9) 76.81 91.02 85.53
(kN-s™") (16.16) (17.66) (25.94) (30.35) (36.31) (29.85) (47.54)
RTpy (deg) 14.7(5.43) 13.8(8.28) 16.1(5.65) 15.9(8.56) 17.9(5.94) 18.3(9.21) 19.1(6.01) 19.7(8.58) 19.6(5.87) 19.8(7.47)
RT, 1y (deg) 23.6(4.38) 24(5.86) 25(4.04) 25.3(4.35) 26.2(4.29) 26.2(4.69) 27.5(4.62) 27.6(5.02) 28.7(4.96) 29.1(5.45)

threshold defined class, for each of the top four features.
For the RTap, the plot shows that angular range above
~10° is associated with a steady linear increase in the
probability of an observation to belong in the later
stages of the test (Figure 2(l)). Similarly, for RFDaxp ON
average, the probability increases slowly for values less
than ~50 kN s™', plateaus until it reaches 75kNs™'
and then increases rapidly until ~115 kN s~' and then
remains stable until ~150 kN s™" (Figure 2(ll)). RTy is
relatively stable until ~25° (Figure 2(lll)) when there is
a shift towards higher probability. For the GRF e,y prob-
ability increases from ~22 to ~0.38 Nkg™' and then
remains stable (Figure 2(IV)). For the RT 1, the prob-
ability increases slightly from the minimum value of
the distribution up until ~23°.

The results of interaction strength test (H-statistic)
showed that especially the interacting pairs RTpp,—
RFDmaxp, RTLru=RTapu and GRFpeak—RTi 1y had a consider-
ably strong effect in predicting the fatigue state (larger
than ~0.4). These effects are visualised as 2D PDP plots
(Figure 3).

4, Discussion

The results demonstrated that RF-approach was a robust
method for classifying the post fatigue condition based
on the present data. Classification metrics displayed that
the model was accurate, sensitive and specific in its pre-
dictions. Furthermore, variable importance showed that
certain variables were more sensitive in predicting the
outcome variable. Various approaches were considered
to interpret and confirm that the model produces mean-
ingful results, independently of how accurate it might
be. Upon them, it can be inferred that the emerged vari-
ables are carrying adequate information to explain the
studied phenomenon.

To further support this result, their mechanical func-
tion in running needs to be explained. Few studies
have investigated trunk kinematics during running.
Frontal plane kinematics (RTap,) were identified as criti-
cal for balance control due to the trajectory of the centre
of mass which is medial to the base of support (Winter,
1995). Flexing the upper trunk laterally closer towards

the supporting leg has been proposed as a strategy
assisting hip abductors to oppose the adduction
torque mainly induced by GRF during running
(Kulmala et al., 2017).

RFDmaxp has been thoroughly investigated because it
was early identified as a very important parameter for
quantifying loading of the lower extremities (Hreljac,
Marshall, & Hume, 2000). The present study showed
that although there is an effect of velocity (Keller et al.,
1996), feature variability should also be considered in
order to understand its effect. Similar increases in
mean values over the same velocity ranges as those pre-
viously reported (Brughelli, Cronin, & Chaouachi, 2011)
were found, yet with a considerable increase in variabil-
ity measures such as standard deviation. Comparatively,
in the present study, according to Table 2, the increase in
standard deviation from minimum to maximum velocity
was ~84.7%, whereas in a previous study (Hinrichs, 1987)
it was only ~36.6% for the equivalent velocity increase.
There was an average increase in the difference of the
standard deviation between stages 1-4 at ~45%. Par-
ticularly, the difference in standard deviation from
fourth (22.96 kN) to fifth (29.85 kN) stage was 6.89 kN
where from third (19.8 kN) to fourth (22.96 kN) was
3.16 kN representing ~118% increase. This phenomenon
is explained by the inherent development of fatigue,
since the present measurements of variability are
increased, in contrast with findings that reported
increasing stability with increases in velocity in non-
fatigue running set-ups (Brughelli et al., 2011).

Vertical axial rotation of the upper body in the RT 1,
axis is a consequence of arm swinging and is considered
as a mechanism for compensating the free rotational
moments (i.e. torque around RT 1, axis) produced by
the movement of the lower extremities. Several
authors provided evidence that during running, the hori-
zontal angular momentum of the upper and lower body
is of equal or almost equal in magnitude and in oppos-
ing directions, resulting in a net angular momentum
near zero for the entire body (Hinrichs, 1987). Thus,
they concluded that arm moments serve to cancel
lower limb moments about the body’s vertical axis. In
the present study, RT 1, was also rather important for
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the accurate outcome prediction. RT 1, angular range
was trending upwards with increasing velocity but the
standard deviation and inter-quartile range were stable
across the different stages (SD: +4.04°-4.96° and
IQR:4.35°-5.86°) as imprinted in Table 2.

During normal running at medium velocities, such as
those that are usually achieved at endurance running, it
has been found that the upper body (trunk and arms) pro-
vides a critical amount of the angular impulse needed from
the lower extremities for alternating their strides (Hinrichs,
1987). Thus, increases in the amplitude of the angular
range and a low variability across the different stages of
the test are very likely to be a compensation for the
decreased performance of the lower body caused by
fatigue. Without the upper body rotating around the verti-
cal axis, although the legs would still manage to produce a
flight phase by themselves, it would not be possible to
provide the necessary torque to reverse their own
angular momentum, which is a prerequisite for preparing
the next contact with the ground (Hinrichs, 1987).

GRFpeak has been studied extensively in running, due
to the association of impact forces with repeated
loading and particular types of overuse injuries or syn-
dromes of musculoskeletal system (Cavanagh & Lafor-
tune, 1980; Nigg, Bahlsen, Luethi, & Stokes, 1987).
GRFgeak Was also important for the model. This feature
exhibited a similar behaviour with RFD.p, With a
stable increase over the first three stages of the test
and more variable for the last two. Also, a large increase
in standard deviation was evident with the difference
between the first and last stage reaching ~78% on
average where other studies (Keller et al., 1996) reported
increases of about 37.5%. Particularly, in the present
data, the standard deviation of stages 1-3 was increased
~16.22% while for stages 3-5 ~53.3% (Table 2).

The PDPs indicated that there are limits for predictors
within which they provide value for the model, but
beyond them no usable information is present. PDP
depict how the different values that a feature could
take, affect and regulate model predictions. The practice
of using PDP to explain the results of a machine learning
model can provide the researcher with cut-off points
beyond which the prediction rate becomes sufficiently
acceptable and stable. In other words, the PDP analyses
gave an idea of the values above or below which the
model can classify observations with the greatest possible
certainty (see Figure 2). PDP are not a measure of correct
classification. Actually, what can be inferred from them is
when the model starts to favour the prediction of one
class versus the other in a probabilistic way. PDP analysis
in machine learning models and especially in highly
non-linear complex algorithms such as RF can also
provide some idea about the pathways that features

EUROPEAN JOURNAL OF SPORT SCIENCE . 7

interact with each other, which is not entirely possible in
traditional statistical analyses (Zhao & Hastie, 2019). The
use of the 2D PDP plots showed diverse combinations
of features (Figure 3). More specific, 2D PDP plots revealed
that there are certain areas in the joint distributions that
are more sensitive in predicting fatigue state. RTap,—
RFDmaxp and GRFge.—RT 1, have a very distinct pattern
where both variables have to surpass a certain magnitude
threshold in order to produce meaningful predictive infor-
mation. On the other hand, a more complex relationship
was evident for RTap,—RT, .. It appears that RTp,, interacts
with RT, 1, only in the high range of its distribution,
whereas RT 1, can interact in a broader range of values.
This is likely referring to the fact that RT 1, is more sensi-
tive to technique variations in contrast with RTp,, which
is rather robust to technique variations because of its
strong association with the maintenance of balance.
More specific, rotation around the anterior-posterior axis
(lateral flexion) is where the trunk moment of inertia has
its highest value (Whitsett, 1963) and thus, even small
deviations in angular ranges could produce large undesir-
able torques that compromise balance.

Although there was a very large number of data points
for the model to consider, the studied sample was small
to account for the substantial inter-individual variations.
Future studies should try to incorporate larger sample
sizes and possibly a single subject analysis perspective.

5. Conclusion

In conclusion, results supported the machine learning
approach using a RF classifier for the classification of
group-based running patterns before and after the
development of fatigue. Also, RTapy, RFDmaxps RTiTu
and GRF,.,« were identified as the most important vari-
ables in the classification model. Nevertheless, interpret-
ation of algorithms that can take into account various
complex non-linear relationships in the feature space is
a demanding task and an ongoing field of research.

Acknowledgements

The authors would like to thank Professor Georgios Mavroma-
tis, Associate Professor Argyris Toubekis for their consulting, Mr
Georgios Manakis for his help during the testing processes, and
the participants for taking part in the study.

Disclosure statement

We wish to confirm that to our knowledge there are no
conflicts of interest related to this study that could have
influenced its outcome.



8 e C. CHALITSIOS ET AL.

ORCID

Christos Chalitsios
Thomas Nikodelis

http://orcid.org/0000-0002-0886-5936
http://orcid.org/0000-0002-5305-1472

References

Abbiss, C. R, Peiffer, J. J,, Meeusen, R., & Skorski, S. (2015). Role
of ratings of perceived exertion during self-paced exercise;
what are we actually measuring? Sports Medicine, 45,
1235-1243.

Breiman, L. (2000). Random forests. Machine Learning, 45, 5-32.
doi:10.1023/A:1010933404324

Brughelli, M., Cronin, J., & Chaouachi, A. (2011). Effects of
running velocity on running kinetics and kinematics.
Journal of Strength and Conditioning Research, 25(4), 933-
939. doi:10.1519/JSC.0b013e3181c64308

Cavanagh, P. R, & Lafortune, M. A. (1980). Ground reaction
forces in distance running. Journal of Biomechanics, 13(5),
397-406. doi:10.1016/0021-9290(80)90033-0

Clansey, A. C,, Hanlon, M., Wallace, E. S., & Lake, M. J. (2012).
Effects of fatigue on running mechanics associated with
tibial stress fracture risk. MSSE, 44, 1917-1923.

Derrick, T. R, Dereu, D., & McLean, S. P. (2002, June).
Impacts and kinematic adjustments during an
exhaustive run. Medicine & Science in Sports & Exercise, 34
(6), 998-1002.

Devries, H. A, Tichy, M. W., Housh, T. J., Smyth, K. D., Tichy, A.
M., & Housh, D. J. (1987). A method for estimating physical
working capacity at the fatigue threshold. Ergonomics, 30,
1195-1204.

Enoka, R. M., & Duchateau, J. (2016). Translating fatigue to
human performance. Medicine & Science in Sports &
Exercise, 48(11), 2228-2238. doi:10.1249/MSS.0000000000
000929

Friedman, J. H. (2001). Greedy function approximation: A gradi-
ent boosting machine. Annals of Statistics, 29(5), 1189-1232.

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via
rule ensembles. The Annals of Applied Statistics, JSTOR, 2(3),
916-954.

Garcia-Pinillos, F. Carton-Llorente, A. Jaén-Carrillo, D,
Delgado-Floody, P. Carrasco-Alarcén, V., Martinez, C., &
Roche-Seruendo, L. E. (2020, February). Does fatigue alter
step characteristics and stiffness during running? Gait &
Posture, 76, 259-263. doi:10.1016/j.gaitpost.2019.12.018

Hanon, C., Thépaut-Mathieu, C.,, & Vandewalle, H. (2005).
Determination of muscular fatigue in elite runners.
European Journal of Applied Physiology, 94, 118-125.
doi:10.1007/500421-004-1276-1

Hinrichs, R. (1987). Upper extremity function in running. Il.
Angular momentum considerations. International Journal
of Sport Biomechanics, 3, 242-263.

Hreljac, A., Marshall, R. N., & Hume, P. A. (2000). Evaluation of
lower extremity overuse injury potential in runners. MSSE,
32(9), 1635-1641.

Keller, T. S., Weisberger, A. M., Ray, J. L., Hasan, S. S., Shiavi, R. G.,
& Spengler, D. M. (1996). Relationship between vertical
ground reaction force and speed during walking, slow
jogging, and running. Clinical Biomechanics, 11(5), 253-
259. doi:10.1016/0268-0033(95)00068-2

Koblbauer, I. F., van Schooten, K. S., Verhagen, E. A, & van
Dieén, J. H. (2014, July). Kinematic changes during

running-induced fatigue and relations with core endurance
in novice runners. Journal of Science and Medicine in Sport,
17(4), 419-424. doi:10.1016/j.jsams.2013.05.013. Epub 2013
Jun 19. PMID: 23790535.

Kuhn, M., & Johnson, K. (2013). Measuring performance in classifi-
cation models - evaluating predicted classes. In Applied
predictive modeling (pp. 254-261). New York, NY: Springer.

Kulmala, J. P., Korhonen, M. T., Kuitunen, S., Suominen, H.,
Heinonen, A. Mikkola, A., & Avela, J. (2017, September).
Whole-body frontal plane mechanics across walking,
running, and sprinting in young and older adults.
Scandinavian Journal of Medicine & Science in Sports, 27(9),
956-963. doi:10.1111/sms.12709

Kumagai, S., Tanaka, K., Matsuura, Y., Matsuzaka, A., Hirakoba,
K., & Asano, K. (1982). Relationships of the anaerobic
threshold with the 5, 10 km, and 10-mile races. European
Journal of Applied Physiology and Occupational Physiology,
49, 13-23.

Liaw, A., & Wiener, M. (2002). Classification and regression by
randomForest. R News, 2(3), 18-22.

Martens, G., Deflandre, D., Schwartz, C., Dardenne, N., & Bury, T.
(2018). Reproducibility of the evolution of stride
Biomechanics during exhaustive runs. Journal of Human
Kinetics, 64, 57-69. Published 2018 October 15. doi:10.
1515/hukin-2017-0184

Meyer, T., Lucia, A., Earnest, C. P., & Kindermann, W. (2005). A
conceptual framework for performance diagnosis and train-
ing prescription from submaximal gas exchange par-
ameters—theory and application. International Journal of
Sports Medicine, 26(Suppl 1), $S38-5S48. doi:10.1055/5-2004-
830514

Miura, K., Goto, S., Katsumata, Y., Ikura, H., Shiraishi, Y., Sato, K.,
& Fukuda, K. (2020, October 29). Feasibility of the deep
learning method for estimating the ventilatory threshold
with electrocardiography data. NPJ Digital Medicine, 3, 141.
doi:10.1038/541746-020-00348-6

Mizrahi, J., Verbitsky, O., & Isakov, E. (2000a). Shock accelera-
tions and attenuation in downhill and level running.
Clinical Biomechanics, 15, 15-20.

Mizrahi, J., Verbitsky, O., & Isakov, E. (2000b). Fatigue-related
loading imbalance on the shank in running: A possible
factor in the stress fractures. Annals of Biomedical
Engineering, 28, 463-469.

Mizrahi, J., Verbitsky, O., & Isakov, E. (2001, March). Fatigue-
induced changes in decline running. Clinical Biomechics
(Bristol, Avon), 16(3), 207-212. doi:10.1016/50268-0033
(00)00091-7

Nagata, A., Muro, M., Moritani, T., & Yoshida, T. (1981).
Anaerobic threshold determination by blood lactate and
myoelectric signals. The Japanese Journal of Physiology, 31,
587-597.

Nigg, B. M., Bahlsen, H. A,, Luethi, S. M., & Stokes, S. (1987). The
influence of running velocity and midsole hardness on
external impact forces in heel-toe running. Journal of
Biomechanics, 20(10), 951-959. doi:10.1016/0021-9290
(87)90324-1

Schubert, A. G., Kempf, J., & Heiderscheit, B. C. (2014, May).
Influence of stride frequency and length on running mech-
anics: A systematic review. Sports Health, 6(3), 210-217.
doi:10.1177/1941738113508544

Stirling, L. M., Tscharner, V. V., Fletcher, J. R, & Nigg, B. M.
(2012). Quantification of the manifestations of fatigue


http://orcid.org/0000-0002-0886-5936
http://orcid.org/0000-0002-5305-1472
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1519/JSC.0b013e3181c64308
https://doi.org/10.1016/0021-9290(80)90033-0
https://doi.org/10.1249/MSS.0000000000000929
https://doi.org/10.1249/MSS.0000000000000929
https://doi.org/10.1016/j.gaitpost.2019.12.018
https://doi.org/10.1007/s00421-004-1276-1
https://doi.org/10.1016/0268-0033(95)00068-2
https://doi.org/10.1016/j.jsams.2013.05.013.
https://doi.org/10.1111/sms.12709
https://doi.org/10.1515/hukin-2017-0184
https://doi.org/10.1515/hukin-2017-0184
https://doi.org/10.1055/s-2004-830514
https://doi.org/10.1055/s-2004-830514
https://doi.org/10.1038/s41746-020-00348-6
https://doi.org/10.1016/s0268-0033(00)00091-7
https://doi.org/10.1016/s0268-0033(00)00091-7
https://doi.org/10.1016/0021-9290(87)90324-1
https://doi.org/10.1016/0021-9290(87)90324-1
https://doi.org/10.1177/1941738113508544

EUROPEAN JOURNAL OF SPORT SCIENCE . 9

during treadmill running. European Journal of Sport Science, Zhao, Q., & Hastie, T. (2019). Causal interpretations of

12(5), 418-424. doi:10.1080/17461391.2011.568632 black-Box models. Journal of Business & Economic
Wasserman, K., Whipp, B. J., Koyl, S. N., & Beaver, W. L. (1973). Statistics, 39(1), 272-281. doi: 10.1080/07350015.2019.

Anaerobic threshold and respiratory gas exchange during 1624293

exercise. Journal of Applied Physiology, 35, 236-243. Zignoli, A., Fornasiero, A., Stella, F., Pellegrini, B., Schena, F.,
Whitsett, C. E. (1963). Some dynamic response characteristics of Biral, F., & Laursen, P. B. (2019, October). Expert-level classifi-

weightless Man. AMRL Technical Report, 63-18. Wright- cation of ventilatory thresholds from cardiopulmonary exer-

Patterson Air Force Base, OH. cising test data with recurrent neural networks. European
Winter, D. A. (1995). Human balance and posture control Journal of Sport Science, 19(9), 1221-1229. doi:10.1080/

during standing and walking. Gait & Posture, 3, 193-214. 17461391.2019.1587523


https://doi.org/10.1080/17461391.2011.568632
https://doi.org/ 10.1080/07350015.2019.1624293
https://doi.org/ 10.1080/07350015.2019.1624293
https://doi.org/10.1080/17461391.2019.1587523
https://doi.org/10.1080/17461391.2019.1587523

	Abstract
	1. Introduction
	2. Methods
	3. Results
	4. Discussion
	5. Conclusion
	Acknowledgements
	Disclosure statement
	ORCID
	References

