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Subject‑specific sensitivity 
of several biomechanical features 
to fatigue during an exhaustive 
treadmill run
Christos Chalitsios  1*, Thomas Nikodelis  1, Georgios Mavrommatis 2 & Iraklis Kollias 1

The aim of the present study was to examine the sensitivity of several movement features during 
running to exhaustion in a subject-specific setup adopting a cross-sectional design and a machine 
learning approach. Thirteen recreational runners, that systematically trained and competed, 
performed an exhaustive running protocol on an instrumented treadmill. Respiratory data were 
collected to establish the second ventilatory threshold (VT2) in order to obtain a reference point 
regarding the gradual accumulation of fatigue. A machine learning approach was adopted to analyze 
kinetic and kinematic data recorded for each participant, using a random forest classifier for the region 
pre and post the second ventilatory threshold. SHapley Additive exPlanations (SHAP) analysis was 
used to explain the models’ predictions and to provide insight about the most important variables. The 
classification accuracy value of the models adopted ranged from 0.853 to 0.962. The most important 
feature in six out of thirteen participants was the angular range in AP axis of upper trunk C7 (RTAPu) 
followed by maximum loading rate (RFDmaxD) and the angular range in the LT axis of the C7. SHAP 
dependence plots also showed an increased dispersion of predictions in stages around the second 
ventilatory threshold which is consistent with feature interactions. These results showed that each 
runner used the examined features differently to cope with the increase in fatigue and mitigate its 
effects in order to maintain a proper motor pattern.

Human movement, results from the complex interplay of the nervous, muscular, and skeletal systems, and 
exhibits unique outcomes due to the adaptability of those systems1,2. The interaction of intrinsic-organismic, 
environmental, and task constraints leads to individualized movement patterns3.

Running is a typical example of a fundamental human activity where all the above-described properties can 
be observed. Running is a demanding activity for each of the three-component structure that controls movement. 
It becomes even more challenging for the system mechanics when fatigue progressively accumulates. Fatigue and 
running are two terms that are inextricably linked. Fatigue as a phenomenon has attracted significant research 
interest over the years and is defined as the decline in various objective measures of performance over a discrete 
time period4.

During exhaustive exercise, central and peripheral fatigue contribute to performance decline5. Central fatigue 
relates to the reduced central nervous system capacity for optimal motor output, while peripheral fatigue involves 
factors at/or distal to the neuromuscular junction6–8. The interplay between fatigue mechanisms and physiological 
constraints have been reported to influence performance decline9.

Researchers have proposed various physiological indices to identify the onset of fatigue accumulation during 
exercise, including the ventilatory threshold, respiratory compensation point, heart rate deflection point, critical 
power, physical working capacity at the fatigue threshold, and electromyographic fatigue threshold. These indices 
are used to estimate physical exertion and mark the metabolic transition from aerobic to anaerobic energy pro-
duction, where fatigue effects are more likely to be observed10,11. Fatigue significantly impacts musculoskeletal 
mechanics during running, affecting the mechanical behavior of the system. Adverse effects on neuromuscular 
function can lead to a reduction in mechanical energy transfer during the stretch–shortening cycle12 and a 
decrease in muscle reaction times13. Fatigue also influences trunk kinematics, with changes in trunk flexion 
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and extension observed in recreational runners after a fatigue running protocol14. Exhaustive running makes 
the stance phase more variable, complicating athletes’ efforts to maintain optimal angular displacements15,16. A 
recent study17 highlighted the importance of features like lateral trunk bending and maximum loading rate in 
predicting the fatigue state of recreational runners.

Since inter-individual variability is a well-established concept18, the accumulation of fatigue during running 
is very probable to cause a unique pattern in the strategy that every runner employs to compensate for the effects 
of fatigue. Bates et al.1,19 identified unique performance characteristics among five elite runners that were masked 
when a descriptive group approach was adopted. However, running biomechanics are mostly investigated using 
group-based analyses. While group-based analysis can provide meaningful insights about the differences between 
groups or/and extract conclusions about universal features that characterize human movement irrespective of 
the level of expertise20, the lack of homogeneity in human movement result in a substantial difficulty in deci-
phering individual patterns. Especially, using group model statistics, this challenge becomes even harder. On 
the contrary, subject-specific modeling can be useful in identifying emerging patterns and track changes within 
a single individual. With the substantial improvement of wearable Inertial Measurement Unit (IMU) sensors in 
quality, cost and ease of recording reliable data, coaches and runners use such systems to quantify fatigue, train-
ing load and running mechanics and explore movement patterns.21,22 By taking advantage of the ability these 
sensors provide to continuously record data (which can lead to an extensive amount of information), and the 
use of subject-specific modeling, we could obtain more specialized information about the movement changes, 
and in some cases, outperform group-based models.23,24.

Advanced data analysis techniques like supervised machine learning models have been proposed to model 
complex relationships between biomechanical measures and outcomes of interest25. Tree based methods like 
random forests (RF) have been successfully used in biomechanical research because of their robustness26,27. 
Nevertheless, such tree ensemble algorithms can be more difficult in interpretation despite their potentially 
satisfactory prediction performance. This drawback can be mediated using model interpretation techniques 
such as SHAP (SHapley Additive exPlanations) values which can be used for assigning feature importance and 
interactions among the examined features and thus provide insights about algorithm predictions28,29.

Therefore, the purpose of this investigation was to explore through machine learning models (classification) 
the subject-specific changes in biomechanics of running to exhaustion and map the importance of the measured 
features, using a physiological threshold as the cut-off criterion. The importance of individuality in the running 
pattern was supported by Hoitz et al.30 which found that kinematic features of running, derived from coronal 
and transverse plane were the most relevant in providing information on a runner’s unique movement pattern, 
whereas characteristics of the sagittal plane and ground reaction forces in vertical or anterior–posterior direc-
tion were mostly irrelevant.

This study was set to explore the hypothesis that during incremental running to exhaustion some features, 
which characterize running technique, will have a universal importance amongst the individuals, while others 
will contribute in a subject-specific way.

Results
The classification accuracy value range was from 0.853 to 0.962. Classification accuracy and other metrics 
obtained for each runner are displayed in Table 1. The SHAP based variable importance ranked all the features 
according to their value for the model, to predict the state above the VT2.

In Fig. 1, the proportion of feature importance for each runner is presented. Τhe feature RTAPu appeared to 
be the most important for prediction in 6 out of 13 participants. Also, RFDmaxD appeared first in 3 out of 13 and 
RTLTu in 2 cases respectively. GRFpeak and Itotal were the most important features for 1 out of 13 of the sample 
participants.

Table 1.   Classification accuracy, Cohen’s kappa, sensitivity, specificity and F1 score for each runner.

Runner Accuracy (95% CI) Kappa Sensitivity Specificity F1-score

R1 0.853 (0.815–0.886) 0.701 0.850 0.857 0.815

R2 0.877 (0.842–0.907) 0.750 0.885 0.867 0.825

R3 0.918 (0.891–0.940) 0.795 0.930 0.885 0.842

R4 0.881 (0.844–0.912) 0.762 0.898 0.863 0.839

R5 0.887 (0.853–0.915) 0.732 0.797 0.927 0.887

R6 0.953 (0.930–0.969) 0.904 0.943 0.961 0.922

R7 0.940 (0.915–0.959) 0.880 0.929 0.952 0.896

R8 0.962 (0.940–0.978) 0.920 0.968 0.953 0.882

R9 0.955 (0.932–0.973 0.902 0.952 0.961 0.854

R10 0.923 (0.895–0.946) 0.827 0.953 0.866 0.792

R11 0.927 (0.901–0.948) 0.821 0.972 0.823 0.724

R12 0.952 (0.929–0.970) 0.902 0.952 0.953 0.881

R13 0.948 (0.923–0.967) 0.895 0.973 0.921 0.851
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Figure 2 displays the SHAP dependence plot which describes feature effects on the predictions. The y-axis 
represents the SHAP value and x-axis the raw feature values and so the plot shows the features’ overall influence 
on the model predictions and thus provides an intuitive way to understand the fitted model.

Discussion
The aim of this study was to classify changes in subject-specific running to exhaustion patterns based on the VT2 
using RF classifiers. The results of the current study supported the first part of the initial hypotheses and dem-
onstrated that using an RF approach, robust and accurate classification could be achieved (Ahamed et al., 2019).

While each participant had a different mix of important predictor variables, RTAPu was the most or second 
most important feature in the majority of the participants. This is in line with previous findings from group-
based analysis and also verifies the initial hypothesis of the study17. Winter et al.2 identified the critical role of 

Figure 1.   SHAP based variable importance for each participant.

Figure 2.   SHAP dependence plots for the three representative participants with RTAPu (lateral trunk flexion/
extension) as their most influential feature. SHAP dependence plots show the contribution of a feature to the 
model based on the feature’s distribution. In this plot each point shows an observation from the individual 
datasets, the X-axis line shows the value of the feature in that instance, and the Y-axis shows the SHAP value for 
that feature (RTAPu) that indicates the effect of that feature with that specific value on the prediction. The unit of 
X-axis is the same as the unit of the feature (for RTAPu—degrees), and the Y-axis is the SHAP value for predicting 
pre or post the VT2. Color coding has been used to show the velocity stages of the observations. SHAP values 
above the y = 0 lead prediction values towards the target class (after VT2) and the opposite is true for SHAP 
values less than y = 0.
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trunk frontal plane kinematics (RTAPu) for balance control due to the trajectory of the center of mass which is 
medial to the base of support. Also, lateral flexion (RTAPu) of the upper trunk towards the supporting leg serves 
as an assisting mechanism to oppose the abduction torque mainly induced by GRF during running31. Therefore, 
regulation of this feature is important for an effective running pattern.

Nevertheless, although the majority of runners exhibit a behavior that was characterized from RTAPu there 
were also individuals who did not followed that pattern and had a totally different set of features describing their 
performance. For example, subjects 2 and 7 displayed a very specific behavior regarding feature importance, 
which at the same time differed from all other participants (Fig. 1). Other researchers that studied the walking 
and running gait patterns in healthy individuals also reported the presence of distinct patterns32. Putting fatigue 
in the equation, it is reasonable to expect that individuals will respond with a specific motor solution seeking a 
more energy-efficient movement pattern based on the constraints imposed from their anatomy, morphology, 
physiology and level of training. Apart from the energy efficiency hypothesis33, fatigue in this case could be the 
control variable, the scaling of which may be responsible for moving to a different attractor34 according to the 
dynamic systems theory perspective. This theory posits that the behavioral state (attractor) of an order param-
eter (running mechanics in the present case) is dependent on the scaling of a control parameter (duration or 
speed of running). Such transition phases are characterized by highly variable patterns35 of the order parameter.

Therefore, the expected motor response to fatigue could be different not only for the magnitude level of a 
specific feature, but also for all selected features that are triggered as a response to the imposed demands. The 
SHAP dependence plots for the most influential feature are also pointing out the specificity of the response, 
with some individuals exhibiting more consistent patterns, while others have more variance in their predic-
tions. Specifically, it is observed that in all runners, for the first stages of the test, where velocity is at the low end 
of their respected continuum to exhaustion, predictions are very consistent with a negative prediction impact 
on the overall model. That is not the case as running velocities increase and especially in the transition phase 
(between 55—75% of the total test duration in the current study) where variability of prediction is evident. At 
this point it is crucial to report that increasing velocities without the presence of fatigue does not influence the 
variability of the response. This finding is valid up to velocities up to 100% of maximal aerobic velocity36 which 
corresponded to velocities up to ~ 5.5 m/s. The final velocities in our study ranged from 3.89 to 5 m/s. Therefore, 
the dispersion of prediction values, originating from the intermediate stages of velocity, points out the existence 
of a certain degree of variability in the movement response pattern during these stages, where fatigue apparently 
kicks-in. For example, in runners 6 and 8 (Fig. 2) there is a notable consistency in predictions with increasing 
velocity but this is not the case for runner 3 (Fig. 2) where significant variability is present.

Also, the vertical dispersion (when for about the same area of the feature’s distribution the impact on overall 
model may be very different) in the SHAP values that appears in some individuals for fixed feature values, may 
be related to an interaction effect with other features29. This highlights the fact that an instance of SHAP values 
for a feature is not solely dependent on the value of that feature, but is also influenced from the values of other 
features at that instance. In Fig. 2 it is observed that at the early stages of the test, where everybody runs in a 
comfortable velocity, there is limited vertical dispersion in the SHAP values, relatively to later stages of the test. 
Possibly this phenomenon suggests that the model can capture the compensations, or interconnections of avail-
able features, that occur while the body tries to adapt and maintain proper technique.

The importance of these two characteristics of the SHAP plots, as interpreted above, is that they account for 
feature interaction and the variability of prediction around the transition phase. This could provide a direction 
regarding what velocities are those in which training should take place to make the movement pattern more 
stable and mitigate the effects of fatigue at higher intensities while maintaining the proper technique15,37,38. As 
stated previously observing Fig. 2 can reveal that there are individuals where predictions are consistent and in 
line with the natural succession of velocities as going towards the end of the test and makes clear for example 
that runners 6 and 8 exhibit a stable pattern up to 3.61 m/s. Beyond those velocities significant variation and 
interactions are present which likely suggest alterations in the running biomechanical pattern.

A substantial body of the literature has examined mostly single and discrete variables (e.g. stride time, 
cadence) often in isolation from other features, resulting in conflicting outcomes about the effects of fatigue 
during running. For example, measuring contact time after fatigue in a study by Morin et al. (2011a) in ultra-
marathon runners who performed a 24-h treadmill test showed a decrease. However, it has to be clear that 
fatigue during an incremental to exhaustion test and ultra marathons is regulated by very different mechanisms. 
Moreover, there are reports of reductions in peak knee flexion angle during stance40, whereas others reported 
an increase41. The differentiation of the protocols in terms of test velocity (constant—variable) may also have 
contributed to the observed difference. Nevertheless, this type of univariate statistical approach may also be less 
sensitive in detecting changes in overall running patterns42. In contrast, the current study supports previous 
research which suggests that examining multivariate and/or multi-segment changes may better quantify the 
overall biomechanical changes that occur during running (Phinyomark et al., 2015). It should be noted that 
although data points from each step in the entire trial were recorded for building the subject-specific models, 
the sample was relatively small to account for the substantial population variations. Other variables that often 
have shown to be sensitive to fatigue such as flight time, contact time, vertical stiffness, etc., were not measured 
in this study and therefore this could impact the model output.

A critical point concerns the calculation of the RFD feature for which the time component is imperative. 
The validity of the treadmill force plate set up was checked for its structural stiffness over several loads with 
dead weights with the motor on and off and was found quite higher than leg stiffness during running45. Yet any 
amount of dampening or delay in the force transmission through the treadmill to the force plates may affect the 
accuracy of RFD value or even GRFpeak by smoothening them due to “filtering” of high frequencies. Nevertheless, 
dampening occurs when running on track, grass and practically in several natural running surface that runners 
tend to train. Another potential limitation could arise from the a) the timing variability of VT2 detection and 
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b) the individuality of the physiological or psychological response. Since there is a certain degree of subjectivity 
in the identification process and interpretation criteria in the literature this could bring some uncertainty in 
the precise estimation of VT2, and also the perception of fatigue could differ due to individual physiological 
or psychological differences. While this method offers an interesting angle for exploration, we recognize the 
inherent difficulty in pinpointing a precise crossing point at which fatigue becomes conspicuous and emerges. 
The intricate and multifaceted nature of fatigue, along with its manifestation in kinematic patterns, contributes 
to this challenge. Nevertheless, the accuracy of the models supports the use of VT2 as a criterion for supervised 
machine learning approach. Future research should focus on examining alternative approaches for detecting the 
onset of fatigue accumulation and further understanding its impact on kinematic variations.

It should be reported that the present research setup and methodology points out associations between 
selected features but no cause-and-effect relationships. However, the SHAP values, can assist to gain a deeper 
understanding of the complex relationships between the features and the output, as well as the interactions 
among the features themselves. Although these associations are not entirely interpretable, they form an inspiring 
challenge to study the complexity of the system as a whole. For example, this can be pursuit following a dynamic 
systems perspective (how musculoskeletal and biological constraints interact with the task).

Materials and methods
Participants
Thirteen (13) male recreational runners (age = 37.84 ± 4.53  years, height = 178.15 ± 5.37  cm, 
weight = 78.85 ± 6.89 kg) voluntarily participated in the study. All runners were healthy and free of any neuro-
muscular or musculoskeletal disorders. All participants had to have at least three years of systematic training 
and racing at distances greater than 10 km. The range of performances across the participants in the study was 
between 49 and 57 min for 10 km races. The study protocol was approved by the Institutional Research Review 
Board (Aristotle University Research Ethics and Bioethics Committee: ΕΗ-12/2020) and was conducted in 
accordance with the Declaration of Helsinki. Written informed consents were obtained from all participants.

Protocol and instrumentation
Both biomechanical and physiological data were collected during an incremental running to exhaustion test 
on a treadmill (Impulse RT700, UK). All tests took place between 14.00 and 18.00 pm. Familiarization with 
the measuring equipment was pursued with participants a day before the trial when they came to the lab for an 
easy five-minute run, wearing all the measuring equipment without logging any data. On the testing day the 
participants were asked not to eat anything at least 3 h prior to testing. At this day the procedure included an 
eight-minute light warmup at a self-comfort velocity followed by 5 min of dynamic stretching. The main running 
task were initiated with participants running at a velocity equivalent to 85% of their 10 k tempo (most recent 
race pace) which was approximately between 2.5 and 3.61 m/s. All subjects performed 3-min stages with a steady 
increase on the workload of 0.28 m/s until they were unable to continue and voluntarily interrupted the test. To 
ensure that participants reached significant levels of exhaustion the following criteria were used: Respiratory 
Exchange Ratio ≥ 1.1, Heart Rate ≥  ± 10 beats × min−1 age predicted HRmax, and RPE > 17. Respiratory data ( ̇V
O2 and V̇CO2) were recorded through a portable gas analyzer (PNOE, ENDO Medical, Palo Alto, CA). Ground 
reaction force data obtained from a dual force plate system (k-Delta, K-Invent, Biomechanique, Montpellier) 
with a sampling frequency of 516 Hz on which the treadmill was securely mounted. Also, torso kinematics were 
quantified using a pair of USB connected 6 DoF IMUs (k-sens, K-Invent, Biomechanique, Montpellier) with 
218 Hz sampling frequency. From angular velocity data, the angular displacement was calculated through integra-
tion of angular velocity around the axis of the interest. Systematic drift of the gyroscopes that appeared during 
integration was removed using least squares regression methods. The minimum detectable step (resolution) for 
the IMU sensors is 4 mg/LSB (Least Significant Bit) for the accelerometer, and 0.06°/s for the gyroscope. The 
maximum detectable value for the accelerometer was ± 16 g and for gyroscope ± 2000°/s. The sensors were fixed 
on C7 and L5 respectively. Both systems were internally synchronized.

Data analysis
Pre‑processing
Raw kinetic and kinematic signals were filtered with a second order Butterworth filter with a cutoff frequency 
at 30 and 15 Hz respectively. All the features that were extracted from the ground reaction force and the IMU 
data, represented discrete values from every step (Table 2). For each footfall, contact times were determined with 

Table 2.   Extracted features from the raw signals.

Abbreviation Feature Unit

GRFpeak Max force value per contact N·kg−1

RTLTu, RTMDu, RTAPu Angular range around the three axes of motion (C7) RTLTu = vertical rot, RTMDu = flex/ext, RTAPu = lateral flexion deg°

Itotal Total Impulse N·s

RTLTlo, RTMDlo, RTAPlo Angular range around the three axes of motion (L5) RTLTlo = vertical rot, RTMDlo = flex/ext, RTAPlo = lateral flexion deg°

RFDmaxD Maximum value of rate of force development until GRFpeak kN·s−1

RFDavgD Average value of rate of force development until GRFpeak kN·s−1
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backward and forward search of the point when the curve gradient was equal to zero and setting a threshold for 
the vertical force signal exceeded 40 N.

A moving average filter of eleven breath window was adopted to smooth ventilation data. For the second 
ventilatory threshold (VT2) identification, two experienced independent researchers were asked to examine V̇
E/V̇O2—V̇E/V̇CO2 curves and report the specific time point. In the literature, the VT2 which is closely related to 
anaerobic processes, is defined as an over proportional increase in V̇  E vs V̇O2 output46. The average estimation 
was defined as the time point of data division in two conditions: before and after VT2. A twenty second data 
window before and after that point was removed for every individual. The datasets were searched for outliers 
according to a rule of ± 3 standard deviations. If a point were ± 3 standard deviations away from the local mean 
value (3’ stage), that point’s value was replaced with nearest non outlier point value. In any case in all of the 
thirteen datasets the percentage of outliers were less than 1%. Finally, thirteen n x m matrices were created, one 
for every participant with n representing rows (observations) and m columns (features) with n ranging between 
2347 and 3577 among participants.

Subject specific models
Random forests (RF) were used for classification of the pre and post conditions. RF implementation was per-
formed as originally described by Breiman47. The algorithm combines many decision trees grown in random 
subsets selected with bootstrap aggregation from the feature space. Also, each time a split is made a random 
sample of the available features are considered. Since predictions are produced from the majority vote (average 
prediction of individual trees) of the produced trees, the described procedure has the advantage to decorrelate 
the trees and provide good results in terms of accuracy and highlighting the importance of the supplied features. 
Model results validation was checked by randomly splitting the data into training (80%) and testing (20%) 
sets. The algorithm was trained with tenfold cross validation in the training set and tested the predictions in 
the remaining 20% of the data. This procedure was performed separately for every individual and the related 
performance metrics for each runner appear in Table 1.

In classification problems, large differences in proportions of the response (dependent) variable may have a 
significant negative impact on model fitting. For that reason, special consideration was taken regarding represent-
ative proportions of classes in the response variable during splitting the datasets because of the inter-individual 
variability in the time points where the VT2 appeared. If large disparity between classes was identified, subsam-
pling with random under-sampling was adopted. Random under-sampling seeks to randomly select and remove 
instances from the majority class and so to provide a balanced proportion of the classes consisting the response.

RF is sensitive to parameters such as number of trees that will be grown and number of predictors to be con-
sidered. For this reason, grid search for optimal values of those parameters was adopted, using out-of-bag error 
minimization as criterion selection. For feature selection a recursive elimination process was adopted based on 
accuracy values. This iterative approach aimed to identify the subset of features that have the greatest impact 
on the accuracy of the model. It should also be noted that to ensure the method was entirely subject-specific, 
parameter tuning was conducted separately within each individual. Accuracy (the number of correctly predicted 
data points out of all the data points), sensitivity (the true positive recognition rate), specificity (the proportion of 
actual negatives, which got predicted as the negatives) and Cohen’s Kappa coefficient (a measure of how closely 
the instances classified by the machine learning classifier matched the data labeled as ground truth, controlling 
for the accuracy of a random classifier as measured by the expected accuracy) were used to assess model’s per-
formance (Table 1). All models were built in Python 3.6 with scikit-learn 1.0.1. Finally, SHAP (SHapley Additive 
Explanations) with TreeSHAP implementation29 were used as proposed by Lundberg & Lee28 to interpret how 
the adopted RF models yielded their predictions. This methodological approach provides consistent and accu-
rate attribution values for each feature within each prediction model29. SHAP can provide a visualization of the 
overall feature importance for all the individual models that were fitted to understand the different combinations 
of relative importance needed for each of the participant’s predictions. Also, SHAP dependence plots examined 
how a feature’s attributed importance changes as its value varies within its distribution range29. That is a model 
agnostic, unified approach for explaining the outcome of any machine learning model. SHAP values evaluate the 
importance of the output resulting from the inclusion of feature A for all combinations of features other than A. 
SHAP analysis was carried out using the SHAP python module48. Since in the current study a subject-specific 
design and analysis was adopted, we did not include any null hypothesis significance testing (NHST).

Conclusions
In the present study, each individual exhibited different changes in overall running mechanical parameters in 
predicting the post VT2 state. These findings also support the efficacy of machine learning modeling approach for 
understanding the complexities of running gait patterns based on collecting large amount of data in a laboratory 
setting. Overall, the results of this study showed that the production of work in a fatigued condition results in 
subject-specific changes in biomechanical running patterns, possibly in an effort to compensate and optimize 
the system function to account for the imposed demands based on individual movement characteristics or 
constraints.

Data availability
The datasets generated and/or analyzed in the current study are available from the corresponding author upon 
reasonable request.
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