
Sensor-enabled Functional-Mobility Assessment:
An Exploratory Investigation

Shadan Golestan, Dillam Jossue Diaz Romero, Eleni Stroulia
Dept. of Computing Science

University of Alberta
Edmonton, Canada

{golestan, diazrome, stroulia} @ualberta.ca

Antonio Miguel-Cruz, Lili Liu
Dept. of Occupational Therapy

University of Alberta
Edmonton, Canada

{miguelcr,lili.liu}@ualberta.ca

Abstract—The population of adults aged 65 years and older is
expected to double by 2050. Healthcare systems must adapt to
in order to manage the care of this increasing population. Older
adults with complex care needs require a significant amount of
additional support from caregivers. To maintain, and possibly
improve, their quality of life, it is ideal that they receive this
support while continuing to live in their own homes. Recent
advances in sensing technologies offer the ability to recognize
and collect multiple different types of data around a person’s
movement and physical ability. This data can subsequently
be analyzed in order to inform a person’s functional-mobility
assessment. In this paper, we present an exploratory feasibility
study around the use of Microsoft Kinect™ and KINVENT’s K-
FORCE plates for the purpose of assessing balance skills. Our
results indicate that the analysis of data streams from these two
sensors can effectively lead us towards a portable and adaptable
gesture-evaluation system.

Index Terms—IoT, Kinematic Analysis, Gesture Recognition,
Pressure Analysis, Microsoft Kinect™, K-FORCE Plates

I. INTRODUCTION AND BACKGROUND

The population of older adults is rising at an unprecedented
rate. By 2050, the world’s total population is expected to
grow by 34%, while the population of adults aged 65 and
over is expected to double [1]. Long-term care for the elderly
is essential for management, treatment and rehabilitation of
chronic conditions typically associated with age. Such care is
typically provided by family members, which implies that it
may not be consistent with state-of-practice guidelines [2], [3],
and it may not include standard rehabilitation and assessment
techniques [4], [5].

The integration of Internet of Things (IoT) in healthcare
has enabled caregivers to better observe patients and more
systematically analyze the progression of their conditions [6].
IoT technologies enable the instrumentation and the collection
of data around activities, previously impossible to systemati-
cally observe and measure, which presents a real opportunity
for healthcare applications [7]. Moreover, IoT can potentially
support telecare, which can be a cost-effective means for
remote monitoring, rehabilitation, and assessment of patients
in long-term situations [8]. As an example, Dasios et al. [9]
presented a prototype, in which off-the-shelf and inexpensive
ambient sensors where used in order to infer daily activities

of older adults. The system is capable of issuing alerts to
caregivers in case of unusual patterns of behavior, like falling,
for example.

There is a rich and growing body of work that proposes
the use of IoT systems for the assessment and rehabilitation
of people with complex needs [10]–[12]. These systems vary
in terms of the sensors they employ (e.g., smartphone, cam-
era, RFID, BLE devices, etc) [13] but share many common
characteristics, such as availability, ease-of-use, high accuracy,
and objectivity [4]. Less attention has been dedicated to the
assessment of functional mobility, and specifically balance
skills, using IoT. Studies show that difficulty in balancing
is common among the elderly. Difficulties in balancing can
have one or more causes, including inner ear problems, eye
problems, numbness, heart diseases, long-term diseases such
as Parkinson’s and Alzheimer’s, or side effects of medica-
tions [14].

Several studies have focused on using technological de-
vices for the kinematic analysis of patients [15]–[18]. In
one study [19], researchers used the Kinect™ and the Wii
balance board to estimate the center of mass, which is closely
related to most movements. Due to the limited sensing area
of the Wii balance board, their experiments were limited to
participants’ range of motion. The work described in this paper
is similarly motivated but uses a special-purpose device, the
K-Force plates, instead of the Wii. In our own work with
VirtualGym [20], we demonstrated how the Kinect™ can be
used to observe the postures and movements of a person so
that they can be compared and evaluated against a prescribed
exercise. VirtualGym focuses on analyses of large postures and
movements for the purpose of guiding exercise; in this paper,
we extend on this work, focusing on small movements of the
lower limbs in the context of simple sitting down, standing up,
and walking postures. Zhang et al. [21] proposed a method
for full-body motion capture using three Kinect™ sensors
and a pair of pressure-sensing shoes. This study showed that
depth data alone is insufficient for accurately reconstructing
movements of both feet. However, since different types of
activities (e.g., walking, running, hammer throwing) produced
different patterns of pressure forces, pressure measurements
obtained from the customized sensor-enabled shoes helped
to distinguish among particular activities. This setup is quite978-1-5386-4980-0/19/$31.00 ©2019 IEEE
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Fig. 1. Overall Hardware/Software Architecture.

complex and expensive, which makes it unrealistic for at-home
deployment. According to Ejupi et al. [21] using Kinect™ is
promising in assessing "choice stepping reaction time", a met-
ric for measuring risk of falling, thus enabling the classification
of individuals in "faller" and "non-faller" categories. The above
research studies demonstrate that the Kinect™ , typically in
combination with other wearable sensors, can potentially pro-
vide a more informative assessment of kinematic movements
in individuals, thus enabling a more systematic assessment of
the functional mobility of seniors at home.

In this paper, we present an assessment tool, composed
of a Microsoft Kinect™ (a 3D motion sensor [22]) and a
pair of K-FORCE plates (a pair of portable pressure sen-
sors [23]), to recognize, using machine-learning techniques,
and evaluate essential therapeutic gestures, mainly used to
measure balance skills. In this exploratory feasibility study,
we trained our assessment tool with samples of each gesture
of interest. We describe situations where Kinect™ fails to
recognize correct gestures and K-FORCE Plate data stream
assists in distinguishing them. We also discuss how such an
assessment system could potentially be used by older adults
at home, and receive feedback as to their balance skills and
how to improve them. In addition, the system analysis is
communicated through a simple visualization so that seniors
and their caregivers can gain a better intuition about this
information. Our results indicate that the analysis of data
streams from both the Kinect™ and the plates can lead us
towards a portable and adaptable gesture-evaluation system.

The remainder of this paper is organized as follows. Section
II describes the architecture of our proposed system and the
overall process it implements. Section III reviews some tra-
ditional functional-mobility assessment procedures, currently
performed by therapists observing the subject. Section IV
reports on our findings when we used this system with one of
the authors as the subject. Section V discusses the implications
of this pilot study for the overall feasibility of our method.
Finally, Section VI concludes with a summary of our work
and our plans for the future.

II. METHODOLOGY

Fig.1 shows the overall architecture of our system. The
user is monitored by the Kinect™ (as they move) and the K-
FORCE Plates (as they step on and off them), and through the

corresponding APIs, the raw data is sent to a repository for
further analysis. We use pushing and pulling data-collection
techniques for the Kinect™ and the K-FORCE Plates, respec-
tively. The Kinect™ sensor streams data only when necessary;
as long as it does not recognize a body, there is no reason to
collect and process data and the sensor goes into a stand-by
mode. In contrast, it is necessary to continuously monitor the
plates data, in order to recognize how fast the user performs a
task: for example, if a task involves stepping on (and off) the
plates, the interval between each step could be an indication
of how difficult the task is for the subject.

A. The Microsoft Kinect™ Pipeline

In this work, we use Microsoft Kinect™ Version 2 and
Kinect™ for Windows SDK 2 [24]. As shown in Fig. 1, we
use Kinect™ Studio and Visual Gesture Builder toolboxes
from the SDK, in order to design a classifier for recognizing
gestures. The first toolbox is responsible for capturing RGBD
video streams that are required to train the classifier. The latter
toolbox provides an interface for easily labeling the video
streams, frame by frame. Every frame can be labeled with
positive or negative tags according to a specific gesture. For
instance, if the gesture of interest is "sitting", every frame in
which the subject is seated should be tagged as positive, and
all other frames as negative, thus resulting in a set of positive
and negative frames for each gesture. The result of the labeling
process is a database of gestures, which is used to train a
classifier (Visual Gesture Builder only provides AdaBoost as
a gesture classifier). The database and the classifier can be
utilized in any Microsoft C# application.

We developed a simple C# component to visually communi-
cate the output of the classifier (Fig. 2). The Kinect™ is able to
recognize up to six body skeletons at the same time, thus there
exist six tiles in the left side of the application’s user interface.
As soon as the sensor recognizes a new skeleton, it assigns to
it a gesture classifier that only works with that body skeleton.
Hence, the application supports the recognition of gestures
of up to six people standing in front of the Kinect™. The
classifier’s confidence at each time interval for the first person
has been plotted in the bottom right corner of the application.
In this figure, the subject is performing a "Left foot up" gesture
in an unstable way.
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B. The K-FORCE Plate Pipeline

K-FORCE is the KINVENT product line for rehabilitation
and assessment of human balance using precise dynamometry
instruments. We use K-FORCE Plates for assessment of lower
limb strength, as well as balance. The K-FORCE Plates
device consists of two platforms, each with two embedded
dynamometers. Each plate has a surface of 320 x 160 mm
and can record forces up to 150 kg (300 kg for the pair). A
Bluetooth Low Energy (BLE) device attached to the plates
communicates the collected data; we used the Bluetooth
Generic Attributes (GATT) SDK for Python, and BlueZ [25]
in order to develop a client for this device to read and store
the data they emit.

III. METRICS FOR MEASURING BALANCE SKILLS

In principle, rehabilitation experts use any of the following
assessments to measure an individual’s balance skills [24].
Today, these tests are performed with the subject being ob-
served by a trained therapist with a stop-watch, pen and paper.
This process is resource intensive, since it requires the time
of a specially-trained person, and also subjective. Sensor-
embedded smart devices can potentially mitigate both these
shortcomings.

a) Six Minute Walk Test: This test is used to evaluate
the aerobic capacity and the endurance of the subject. In this
simple test, the distance that a subject can cover is used to
assess the performance of the subject.

b) Timed Up and Go Test (TUG): This metric helps ther-
apists determine fall risk and assess the balance of a subject
while performing "sit to stand" and "walking" activities.

c) Functional Reach Test: In this test, the subject holds
their balance while standing, holding one hand horizontally,
and trying to reach to a specific point using their hand. The
distance that the subject can reach is the measurement of
interest.

Fig. 2. Visual Analysis Software.

Fig. 3. The illustration of RMS, FP, and FN metrics in our application.

d) Tinetti Balance Test: This test is designed to assess
the gait and the balance of a subject, who sits on a hard, arm-
less chair and stands up, without any help of the hands. The
subject should then turn 360 degrees and sit down again.

e) Sit to Stand Test: Similar to the previous test, this test
measures the ability of a subject to maintain balance while
standing up from a seated position.

f) Dynamic Gait Index: This test evaluates how well
subjects can perform a steady-state walking activity. Therapists
can also measure the same metrics during more challenging
tasks, such as holding a box (e.g., shoe box).

g) Berg Balance Scale: This comprehensive set of tests
is designed to measure balance during various tasks. It consists
of 14 tasks, each one scored on a five-point ordinal scale
between zero and four.

In this paper, we use the Berg Balance Scale (BBS) [26], one
of the most comprehensive scales, as the basis for developing
a system that can objectively evaluate the balance skill of an
individual. The scale allows for interpretation from different
perspectives. BBS consists of 14 tests. The equipment needed
to perform the tests are a ruler, two standard chairs (one
armchair and one side-chair), a footstool or step, a stopwatch
or wristwatch, and a 15 ft. walkway. Readers are encouraged
to read [26] for more details about the tests. To consider all the
tests included in the BBS suite, a large training data set would
be required and a corresponding data-collection protocol,
which is beyond the scope of the exploratory feasibility study.
This paper reports how well our system can recognize and
evaluate a subset of three BBS tests, as an initial proof of
concept:

• Standing with the left foot up,
• Standing with the right foot up,
• Grabbing an object from the floor, and
• Stepping on a stool.

Each of these tests can be performed in either a stable or
an unstable manner. Therefore, in total, we have to recognize
eight classes of gestures.
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IV. RESULTS

We record a video stream and capture data from K-FORCE
Plates while a person performs each of the above mentioned
gestures. We train a classifier, using Adaboost method, in
order to recognize gestures from Kinect™’s data stream. Each
video is labelled accordingly using the Visual Gesture Builder
toolbox.

The accuracy of the gesture classifier was measured using
three metrics: Root Mean Square (RMS), False Negatives
(FN), and False Positives (FP). Fig. 3 illustratively depicts
these metrics. The figure shows a window of 39 frames while
a subject is performing the Right foot up task. Each frame is
tagged accordingly and shown as ground truth in the figure
with a blue line; and the output of the classifier is shown with
green bars. RMS is defined by the following equation:

RMS =
√
1/n(f2

1 + f2
2 + ...+ f2

n), (1)

where fi, i ∈ [1, n] are the frames that the classifier detected
the true label either in advance or with delay in compare to
ground truth labels. FP and FN metrics show the number of
incorrect labeling events and the number of missed true events,
respectively.

Two of the authors, P1 and P2, both young healthy male
adults, performed each of the eight gestures twice and once
respectively. We have labeled all the frames of the Kinect data
stream accordingly and trained our classifier using 50% of the
data collected from P1’s demonstration. We tested the classifier
using the rest of P1’s data and all the data from P2.

Fig. 4 shows the RMS value for each person. P1’s RMS
is lower than P2’s RMS, which is not surprising since the
classifier was trained using P1’s video streams. We calculated
an unpaired t-test on the values; by conventional criteria, the
difference between the RMS values for P1 and P2 was not
statistically significant (pvalue = 0.0878). The system did not
have a high number of FP and FN errors.

Fig. 5 shows the data streams from both the Microsoft
Kinect™ and the K-FORCE Plates over a time interval. In this
interval, the subject was performing the "stable right foot up",

Fig. 4. The RMS value for person one (P1) and person two (P2) in each
class.

"unstable right foot up", and "stable left foot up" tasks. The
plates data clearly indicate the unstable state of the subject. For
this reason, the plates can be used as a source of information
to distinguish unstable gestures from stable ones.

The K-FORCE Plates can also be used to justify the
classifier output, especially in cases where the output does not
have a sufficiently high confidence level. This use of the Plates
data is shown in Fig. 6, where the classifier has relatively
high confidence for the "stable grab", "unstable grab", and
"stable step on stool" tasks. Although the classifier’s output
is correct (e.g., "stable grab"), it is not necessarily always
true. When the subjects bend and try to grab something on
the floor, the skeleton data of the Kinect™ gets noisy; in this
case, distinguishing between a stable grab and unstable grab is
almost as accurate as choosing one by chance. This is where
it becomes important to include the data from the K-FORCE
Plates. From the plates data, we can see that the subject is
performing a stable gesture as there is significant difference
in both lower and upper forces in comparison between stable
and unstable gestures (pvalue = 0.00001) in both upper and
lower parts of the plates).

In addition, the pressure is almost half in comparison to
the situation when the subject is standing on one foot, and it
not as low as if he or she steps up on the plates. Therefore,

Fig. 5. The output of the gesture classifier and K-FORCE Plates while the
subject is performing three tasks: stable right foot up, unstable right foot up,
and stable left foot up.
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Fig. 6. The output of the gesture classifier and K-FORCE Plates while the
confidence of classifier is relatively high for three gestures: "stable grab",
"unstable grab", and "stable step on stool". This is an example where K-
FORCE can be used to justify the output of the classifier.

by additionally using the K-FORCE Plates as a source of
information, it can be confirmed that the subject is performing
the "stable grab" gesture in this scenario.

V. DISCUSSION

The combined use of the Microsoft Kinect™ and the
K-FORCE Plates in measuring an individual’s balance skill
is promising. The former can provide useful information
about the body skeleton that is essential for recognizing full-
body movements and detecting whether a gesture is stable
or unstable. In some situations, the recognition task becomes
more difficult because of noise in the input data; potential
causes for such noise include changes in the environment, the
lighting, and the position of the Kinect™ sensor relative to the
subject and the gesture. The K-Force data shows that it can be
used to distinguish between stable and unstable gestures, but
it has the added capability of filtering out unlikely gestures
based on the amount of pressure on each plate. Therefore, to
effectively recognize balance-based gestures, it is useful to use
the combined data from both of these sensors.

Statistical analysis is required to show that the amount of
pressure for each gesture and the distribution of the data
between stable or unstable is indeed significantly different.
Because each K-FORCE Plate has its own Bluetooth Low
Energy (BLE) device, we faced some implementation chal-
lenges regarding the frequency of collecting data. The plates

work on the 25 (Hz) frequency. However, if we adjust the
frequency to 75 (Hz), two problems arise: 1) one of the
plates sends packages of data about three times faster than
the other, and 2) the plates have delays in stopping the
data stream. The first problem makes synchronization of the
data streams between the Kinect™ and the K-FORCE Plates
challenging. The second problem prevents us from running
experiments for periods of time longer than two minutes; the
plates stop sending packages of data after this period of time.
We anticipate that this issue illbe resolved in the next version
of the device.

Based on our observations in this paper, we describe, in
Table I, different scenarios where information from either
Kinect™or K-FORCE Plates or both provide more discrim-
inative hints in order to recognize gestures.

Although we observe that the system performance in recog-
nizing gestures is promising, the system works for a limited
subset of the Berg Balance Scale tasks. To have a system that
can recognize all 14 tasks in the BBS correctly, a larger volume
of training data (with more than one subject performing each
task within a variety of environments) is necessary. Recording
other videos for a gesture from different angles would also
help the classifier to be robust to environmental features such
as light, other objects, etc.

Our initial results suggest that a comprehensive study is
warranted. For a comprehensive study, two group of subjects
(i.e., control and intervention) are required. The control group
could consist of older adults with balance difficulties who
receive traditional treatment; the intervention group could
consist of the same population as the control group, with the
added feature that they also use this system as exercises or
activities while using system, the system gives them feedback
that they can use to improve their balance, and an additional
intervention in their home setting. Through this approach, we
could determine if the system has a statistically significant
effect on the intervention group. We envision that the system
should be combined with a user interface, e.g., a video game,
that gives real-time feedback to its users. This way, the subjects
would be motivated to perform tasks more regularly.

TABLE I
A LIST OF SCENARIOS, IN WHICH EACH SENSOR WITH BETTER

DISCRIMINATIVE INFORMATION IS SPECIFIED.

Scenarios Kinect™ K-FORCE
Plates

Clear sight on body skeleton 3 3

Unclear sight on body skeleton 3

Discriminating unstable from
stable gestures 3

Discriminating upper body
gestures 3

Measuring pace of a gesture 3 3
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VI. CONCLUSION

Older adults often experience difficulties with their balance,
and more generally their mobility. It is essential to assess these
skills regularly, in order to recognize if they need any new
supports and of what kind. Traditional assessment methods
require older adults to visit therapists and perform standardized
tests involving walking, sitting and standing up, and reaching.
This process is costly, since many older adults may require
assistance to visit their healthcare professionals. Furthermore,
these tests are interpreted, to some degree, subjectively by the
therapist observing the activity.

There are many studies that have examined various techno-
logical systems that this population can utilize in their home,
in order to minimize the need to visit therapists in a clinical
setting. In this paper, we examined the use of Microsoft
Kinect™ and K-FORCE Plates in order to intervene and assess
the therapy tasks needed to improve the balance skill in older
adults. We extracted a subset of four tasks from the Berg
Balance Scale (BBS), which includes 14 tasks that are widely
used in rehabilitation assessment to evaluate balance.

Detection and evaluation of this BBS task subset are used as
a proof of concept that our system works with a useful level of
accuracy. Our preliminary results show that the combination
of the data from the Kinect™ and the K-FORCE Plates
can be used to detect tasks and assess the subject’s balance
skills. The system can add biomechanical information that
the Berg Balance Scale does not provide, which generates a
better feedback to the user. This information could be a good
complement to current balance assessment procedures. This
paper suggests that a more extensive study on this topic is
warranted.
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