스트레칭 유형에 따른 중학교 축구 선수들의 하지 근력 및 퍼포먼스에 미치는 급성효과

Acute Effects of Stretching Type on Lower Extremity Strength and Performance in Middle School Soccer Players

김준영(한국체육대학교 스포츠의학과 박사과정)1 · 박한수(한국체육대학교 스포츠의학과 박사)2 · 홍예인(한국체육대학교 스포츠의학과 박사과정)3 · 한승혜(한국스포츠정책과학원 분석연구원)4 · 박미란(한국체육대학교 체육학과 석사)6 · 윤진호(한국체육대학교 체육학과 교수)6

1Kim, Jun-Young, 2Park, Han-Soo, 3Hong, Ye-In(Korea National Sport University),

4Han, Seung-Hye(Korea Institube of Sport Science), 5Park, Mi-Ran, 6Yoon, Jin-Ho(Korea National Sport University)

국문초록

연구목적 본 연구는 스트레칭 유형에 따른 중학교 축구 선수들의 하지 근력 및 퍼포먼스에 미치는 급성효과를 검증하고자한다. 연구방법 대한축구협회에 등록된 중학교 축구 선수 10명을 대상으로, 1주일 이상의 Wash-out 기간을 두고 정적 스트레칭(SS), 동적 스트레칭(DS), 고유수용성 신경근 촉진(PNF)을 각각 적용하였다. 하지 근력(신전, 굴곡) 및 경기력 요소(순발력, 민첩성, 스프린트, 슈팅 속도)에 미치는 급성 효과를 분석하였다. 결과 본 연구의 결과는 다음과 같다. 첫째, 하지 근력(신전, 굴곡), 순발력, 스프린트(10m, 20m), 슈팅 속도에서 SS보다 DS가 유의하게 높은 결과를 보였다(p<.05). 둘째, 민첩성에서는 SS보다 PNF가 유의하게 높은 결과를 나타냈다(p<.05) 결론 DS는 하지 근력 및 퍼포먼스 향상에 효과적이며, PNF는 민첩성 향상에 유리한 것으로 나타냈다 향후 연구에서는 스트레칭의 장기적 효과와 다양한 대상군을 고려한 연구가 필요하다.

주요어 정적 스트레칭, 동적 스트레칭, 고유수용성 신경근 촉진, 하지 근력, 퍼포먼스

ABSTRACT

PURPOSE The purpose of this study was to investigate the acute effects of different stretching types (static stretching, dynamic stretching, and proprioceptive neuromuscular facilitation) on lower extremity strength and performance factors in middle school soccer players, providing practical insights into pre-competition stretching protocols. METHOD This study involved 10 middle school soccer players(mean age: 15.8±0.6 years) registered with the Korea Football Association. Static stretching(SS), dynamic stretching(DS), and proprioceptive neuromuscular facilitation(PNF) were applied with a 1-week washout period. Acute effects on lower extremity strength(extension, flexion) and performance factors(power, agility, sprint speed, shooting speed) were analyzed. RESULT The results of this study were as follows. First, DS showed significantly higher lower extremity strength(extension, flexion), agility, sprint speed(10m, 20m), and shooting speed compared to SS(p<.05). Second, agility was significantly higher in the PNF group than in the SS group(p<.05). CONCLUSION These findings suggest that DS is more effective than SS in improving lower extremity strength and performance factors in soccer players. PNF may be beneficial for enhancing agility. Future research should explore the long-term effects of these stretching types and their applications in various athletic populations.

KEYWORD Static Stretching, Dynamic Stretching, Proprioceptive Neuromuscular Facilitation, Lower Extremity Stength,
Perfomance

*교신저자: 윤진호 E-mail tkd47@knsu.ac.kr

^{*}투 고 일: 2025년 01월 015일 심사의뢰일: 2025년 01월 17일 게재확정일: 2025년 01월 30일

I. 서론

축구(Soccer)는 다양한 기술(Skill)과 함께 빠르고 복합적인 움직임을 요구하며, 간헐적 고강 도 능력이 지속적으로 발휘되거나 중단 되기도 하는 운동이다(장원봉, 김준영, 홍예인 과 윤진 호, 2023; Cometti Maffiuletti, Pousson, Chatard, & Maffulli, 2001). 축구에서는 하지 근력(Low limb strength), 근파워(Muscle power), 근지구력(Muscle endurance), 균형(Balance), 유산소성 (Aerobic) 및 무산소성(Anarobic) 능력 등 다양한 체력 요소들이 필요하다(김준영, 송기재, 박한 수, 오재근, 윤진호, 2024). 체력 요소들은 경기력을 유지하고 기술 및 전술을 효과적으로 발휘 하기 위해 필수적으로 요구되며(이윤형, 2021; Ekblom, 1986), 체력 수준이 높을수록 부상 위험 감소와 함께 경기력을 향상할 수 있다는 연구 결과에 따라 경기력을 위해서는 체력적 요소가 중요시된다(김기진 등, 2012; 지무엽, 윤진호, 2022; Gabbett, 2016). 또한, 체력 요소들은 훈련을 통해 향상될 수 있지만, 일부 요소들은 필수적으로 향상해야 하는 적절한 연령대가 있다(김준 영 등, 2024). 특히, 유소년 시기 체력 향상은 성인이 된 후에도 부상 및 경기 기술의 향상과 직결되기 때문에 알맞은 시기에 개별적이고 과학적인 운동 처방이 필요하다(윤균상 등, 2013; 이용수, 하민수, 2000). 또한, 대한축구협회(Korea Football Association)는 유소년 선수 중 중학교 선수 연령대를 골든에이지(Golden age)라 명칭하며, 골든 패스(Golden pass)라는 시스템을 적용 하여 선수들의 기량을 측정하고 데이터를 기반으로 미래의 국가대표 육성 및 발굴하기 위해 관리하고 있다(김준영 등, 2024). 이는 중학교 선수의 중요성과 체력 향상이 필수적이라는 것 을 시사한다. 이러한 체력을 발휘하기 위해서는 선수가 스트레칭(Stretching)을 어떻게 하고 어 떤 스트레칭을 할 것인가도 중요하다(이용수, 박종수, 강덕모, 2008).

Chaabene, Behm, Negra와 Granacher(2019)은 스트레칭 후 근육 부상 위험을 낮춘다고 보고하였다. 또한, Seçer와 Kaya(2021), Yildiz와 Mehmet(2024)은 스트레칭 후 유연성 민첩성, 근력, 그리고 균형 등 긍정적인 효과를 제공할 수 있다고 보고하였다. 이러한 스트레칭의 종류로는 정적 (Static), 동적(Dynamic), 고유수용성 신경근 촉진(Proprioceptive Neuromuscular Facilitation, PNF) 등 다양한 스트레칭 기법이 있다. 정적 스트레칭(Static Stretching, SS)은 특정 근육을 15~60초 동안 유지하여 근육의 길이를 증가시키고, 주로 유연성 향상과 부상 예방에 초점을 맞춘다 (Behm et al., 2016). 반면, 동적 스트레칭(Dynamic Stretching, DS)은 반복적인 움직임을 통해 근육을 신장시키면서 동시에 심박수와 체온을 상승시켜 경기 전 워밍업으로 적합하다 (Faigenbaum et al., 2005). PNF는 근수축과 이완을 결합하여 신경근 기능을 촉진하고 가동 범위를 증가시키는 기법으로, 보조자의 도움을 받아 수행하는 경우가 많다(Zaidi et al., 2023). 이러한 스트레칭 유형은 각각의 특성과 효과가 다르며, 축구 경기력 향상에 미치는 영향도 다르게 나타날 수 있다. 또한, 스트레칭은 여러 생리학적 기전을 통해 후속 성과를 향상시키는 것으로 알려져 있으며, 온도 관련, 대사 변화, 그리고 신경학적 효과로 구분될 수 있다(박병재, 김정훈, 2020; Bishop, 2003; McGowan, Pyne, Thompson, & Rattray, 2015; Ollano, 2023; Patti et al., 2022).

첫째, 스트레칭은 신체와 근육 온도를 증가시켜 근육의 경직을 감소시키고 혐기성 대사를 촉진하는 등의 온도 관련 효과를 유발한다. 둘째, 산소 소비 속도를 증가시키는 대사적 변화가 발생하여 운동 수행에 필요한 에너지 공급을 원활하게 한다. 마지막으로, 신경근 시스템의 활 성화를 촉진하여 미오신과 액틴 필라멘트 간의 상호작용을 최적화하며, 활성화 후 강화 (Post-Activation Potentiation, PAP)를 통해 근육의 수축력을 향상시킨다(박병재, 김정훈, 2020; Bishop, 2003; McGowan et al., 2015; Ollano, 2023; Patti et al., 2022).

이처럼 스트레칭은 ROM, 부상 예방 및 균형에 긍정적인 영향을 미치며, 근육 활성화에도 효 과적이라고 보고되고 있다. 하지만, SS는 ROM 개선 및 부상 예방에 효과적이지만, 근 활성도 감소 및 민첩성 저하를 유발할 수 있다는 보고가 있다(Behm, Bambury, Stiff, & Coratella, 2004), 이는 근 활성도, 신경 자극, 근방추 민감도 등 다양한 요인들의 감소를 유발하기 때문이라고 보고하였다(Avela, Kyröläinen, Komi, 1999; Ayala & Sain de Baranda, 2010; Taleb-Beydokhti, 2014). 반면, DS는 근파워 향상에는 효과적이지만, 스프린트 능력 개선에는 제한적이다 (Turki-Belkhiria et al., 2014). 이러한 연구들은 스트레칭 유형에 따라 효과가 상이함을 시사하지 만, 특히, 중학교 축구 선수들을 대상으로 한 스트레칭 유형별 하지 근력 및 경기력 변화에 관 한 연구는 부족하다. 따라서 본 연구의 목적은 스트레칭 유형 선택에 있어 실질적인 근거를 제 공하고자 한다.

Ⅱ. 연구방법

연구대상

본 연구의 대상자는 대한축구협회에 등록된 중학교 축구 선수들을 대상으로 하였으며, 최 근 6개월 이내에 근·골격계 손상이 있는 선수, 운동 참여에 제한이 있는 선수는 제외하였다. 대상자 모집은 팀 지도자를 통해 자발적 참여 동의를 얻어 진행하였으며, 지도자의 협조를 통해 훈련 경력 3년 이상의 남성 선수 10명의 대상자를 모집하였다. 모집된 대상자는 연구 목적과 절차에 대한 설명을 실시하였으며, 정적 스트레칭(Static Stretching, SS), 동적 스트레 칭(Dynamic Stretching, DS), 고유수용성 신경 촉진(Proprioceptive Neuromuscular Facilitation, PNF)을 진행하였다. 또한, 본 연구에 대해 충분한 이해와 자발적인 동의를 받았으며, 보호자 들에게 참여 동의서를 서면으로 받았다. 대상자의 신체적 특성은 <표 1>과 같다.

2. 연구 절차

본 연구는 급성 교차 연구(Acute Crossover Trial)로 설계하였다. 급성 교차 연구는 대상자가 두 개 이상의 중재 프로그램이 개입하는 것으로 개입 간 Wash Out 기간을 두어 이전 개입의

	\sim –	-0.11-1	1.140 7.1	= 1.1
± 1.	연구	내상사	신체적	득성

구분	SS	DS	PNF
연령	15.8±0.6	15.8±0.6	15.8±0.6
신장	172.7±7.2	172.7±7.2	172.7±7.2
체중	60.3±6.7	60.3±6.7	60.3±6.7
체지방률	20.2±0.9	20.2±0.9	20.2±0.9

영향을 최소화하는 연구 절차이다. 모집된 대상자는 하나의 그룹으로 정적(Static), 동적 (Dynamic), 그리고 PNF 스트레칭을 실시하였으며, 각 프로그램은 1주 이상의 Wash Out 기간을 갖고 실시하였다. Wash Out기간 동안 대상자는 팀 훈련은 유지하되, 연구와 관련된 스트레칭을 수행하지 않도록 통제하였다. 또한, 스트레칭 순서는 실험의 무작위성을 보장하기 위해 제비뽑기를 사용하여 결정하였다. 모든 절차(Protocol)는 한국체육대학교 생명윤리위원회 (International Review Board, IRB)의 승인받아(20240911-126) 진행하였다.

3. 중재 방법

본 연구에서 사용된 정적 및 동적 스트레칭은 Chaouachi et al. (2010)의 연구에서 사용된 프로그램을 사용하여 종아리근, 대퇴사두근, 햄스트링, 둔근 및 내전근 순으로 스트레칭을 진행하였다. 정적 스트레칭 방법으로 종아리근은 대상자에게 똑바로 선 자세에서 계단 가장자리에서 발꿈치를 내리며, 다리를 완전히 펴고 최대한 가동범위까지 늘리도록 지시하였다. 대퇴사두근 및 둔근은 대상자는 벽을 짚고 균형을 잡은 상태에서 같은 쪽 손으로 발목을 잡고 엉덩이 관절을 완전히 피라고 지시하였다.

햄스트링은 앉은 자세에서 한 쪽 다리를 펴고 다른 다리는 구부려 발이 허벅지에 닿도록 하며, 허리를 숙여 상체를 앞으로 기울여 등을 곧게 유지하도록 지시하였다. 마지막으로 내 전근은 대상자는 다리를 가능한 넓게 벌린 상태에서 한쪽에서 다른 쪽으로 체중을 이동시키 면서 무릎을 구부리고 다리를 뻗은 상태에 발끝을 향해 손을 뻗고 유지하도록 지시하였다.

동적 스트레칭 방법으로 종아리근은 한쪽 발을 바다에서 들어 올려 무릎을 완전히 펴고 종아리근을 수축시켜 발가락과 발이 위쪽을 향하도록 지하였다. 대퇴사두근은 대상자는 햄스트링을 수축시키고 무릎 관절을 굽혀 불뒤꿈치가 엉덩이에 닿도록 지시하였다. 햄스트링은 무릎을 편 상태에서 엉덩이 굴곡근을 수축시키고 엉덩이 관절을 굽혀 다리가 몸 앞쪽으로 스윙되도록 지시하였다. 둔근은 무릎을 구부린 상태에서 엉덩이 굴곡근을 수축시키고 엉덩이 관절을 굽혀 허벅지가 가슴까지 올라오도록 지시하였다. 마지막으로 내전근은 기둥을잡고 몸을 기대며, 다리를 역동적으로 내전 및 외회전시켜 최대한 높이 들도록 지시하였다. 스트레칭은 30초 동안 수행하였으며, 각 스트레칭 사이에 10초의 회복 시간을 두고 진행하였다.

고유수용성 신경근 촉진은 Hold-relax 기법을 사용하여 최대 신장 범위에서 10초 등척성 수축 후 10초 이완을 적용하여 3세트 진행하였다. PNF는 정적 및 동적 스트레칭과 같은 근 육을 목표로로 종아리근, 대퇴사두근, 햄스트링, 둔근 및 내전근 순으로 진행하였으며, 연구 와 관련 없는 물리치료사의 도움을 받아 주관적 지각에 따라 스트레칭 지점을 점진적으로 증가시켰다(Oliveira et al., 2018).

4. 측정항목 및 방법

1) 하지 근력(Low limb strength)

하지 근력의 평가는 휴대용 동력계(K-Push, KINVENT, Montpellier, France)를 사용하여 측 정하였다. 대상자는 의자에 앉아서 무릎을 90° 굴곡 시킨 자세에서 무릎 관절(Knee Joint)의 신전(Extension), 굴곡(Flexion)의 등척성 근력을 측정하였다. 근력의 측정은 5초 동안 유지하 도록 하였으며, 총 3회 반복측정을 실시하여 최댓값을 사용하였다.

2) 퍼포먼스(Performance)

(1) 순발력(Power)

순발력의 평가는 버티컬 점프기(T.K.K 5106, TAKEI, Japan)를 사용하여 측정하였다. 대상자 는 점프기를 허리에 매고 측정기를 0점에 맞춘 상태에서 준비하며, 자유롭게 팔 스윙을 하 면서 앉은 반동을 이용하여 최대한 높게 점프를 하도록 지시하였다. 측정은 총 2회, 실시하 였으며, 측정 사이에 30초의 휴식을 실시하였다. 결과는 0.1cm 단위로 기록하였으며, 최댓값 을 사용하였다.

(2) 민첩성(Agility)

민첩성의 평가는 T-test를 사용하여 측정하였다. 0m에서 직선 10m, 가로 양측으로 5m씩 콘 을 세우고 진행하였으며, T자 모양의 코스를 정하여 A지점에서 B지점까지 앞으로 달린 후 B지점에서 C지점까지 사이드 스텝 동작으로 진행, 다시 D지점까지 사이드 스텝을 진행하고 B지점까지 사이드 스텝 움직임을 한 후 B지점에서 A지점까지 뒤로 달리는 것을 측정하였 다. 총 2번 측정하여 최솟값을 0.01초 단위로 사용하였다.

(3) 스프린트(Sprint)

스피드의 평가는 10m, 20m 스프린트를 초시계(HS-30W, Casio, Japan)를 사용하여 측정하였 다. 측정은 0m, 10m, 20m 지점에 콘을 세우고 대상자는 0m 지점에서 출발할 수 있도록 지 시하였으며, 2회 측정하여 최솟값을 0.01초 단위로 사용하였다.

(4) 슈팅 속도(Shooting Speed)

슈팅 파워의 평가는 스피드건(Velocity Speedgun, Bushnell, USA)을 사용하여 골대에서 11m 거리에 볼을 두고 선수에게 골대로 최대한 강하게 슈팅을 지시하여 측정하였다.

5. 자료처리 방법

본 연구의 자료를 분석하기 위해 Window용 SPSS/PC(Version 23.0, Chiocago, Illinois, USA) 통계 프로그램을 사용하여 분석하였으며, 값은 평균과 표준편차로 나타내었다. 스트레칭별 차이를 검증하기 위해 One-way ANOVA를 실시하였다. 사후검증은 Scheffe 방법을 사용하여 분석하였으며, 증감률을 통해 나타내었다. 통계적 유의 수준은 *α*≡.05로 설정하였다.

Ⅲ. 연구결과

본 연구의 결과를 분석하기 위해 One-way ANOVA를 실시한 결과 하지 근력(무릎 신전 근력, 무릎 굴곡 근력) 및 퍼포먼스(순발력, 민첩성, 스프린트, 슈팅 속도)에서 집단-간 유의한 차이가 나타났다.

1. 하지 근력(Lower Limb Strength)

1) 무릎 신전 근력(Knee Extension Strength)

One-way ANOVA를 실시한 결과 하지 근력을 평가한 무릎 신전 근력에서는 왼발 및 오른발 모두 집단-간 유의한 차이가 나타났다(p=.043, p=.034). 사후검증 결과 왼발 및 오른발 모두 SS 집단보다 DS 집단이 각각 15.96%, 13.43% 유의하게 높았다(p=.050, p=.039). SS와 PNF를 분석한 결과 SS 집단보다 왼발과 오른발에서 각각 4.71%, 4.21% 높은 증감률을 보였지만, 유의한 차이는 나타나지 않았다(p=.749, p=.702). DS와 PNF를 분석한 결과 PNF 집단에 비해 DS 집단이 왼발 및 오른발 모두 각각 10.74%, 8.85% 높은 증감률을 보였지만, 유의한 차이는 나타나지 않았다(p=.208, p=.197). 이상의 결과를 종합해 보면 SS와 PNF보다 DS가 높은 증감률을 나타낸 것을 확인할 수 있었으며, DS가 무릎 신전 근력에 효과적인 것을 확인할수 있었다. 중학교 축구 선수들의 스트레칭 유형에 따른 하지 근력 결과는 <표 2>와 같다.

2) 무릎 굴곡 근력(Knee Flexion Strength)

One-way ANOVA를 실시한 결과 하지 근력을 평가한 무릎 굴곡 근력에서는 왼발 및 오른 발 모두 집단-간 유의한 차이가 나타났다(p=.011, p=.007). 사후검증 결과 무릎 굴곡 근력은 왼발 및 오른발 모두 SS 집단에 비해 DS 집단이 18.17%, 15.64% 유의하게 높았다(p=.012, p=.010). SS와 PNF를 분석한 결과 SS 집단에 비해 PNF 집단이 왼발 및 오른발 모두 6.47%, 2.82% 높은 증감률을 보였지만, 유의한 차이는 나타나지 않았다(p=.522, p=.716). DS와 PNF를 분석한 결과 PNF 집단에 비해 DS 집단이 왼발 및 오른발 모두 각각 10.99%, 12.46% 높은 증감률을 보였지만, 유의한 차이는 나타나지 않았다(p=.133, p=.060). 이상의 결과를 종합해 보면 SS와 PNF보다 DS가 높은 증감률을 나타낸 것을 확인할 수 있었으며, DS가 무릎 굴곡 근력에 효과적인 것을 확인할 수 있었다. 중학교 축구 선수들의 스트레칭 유형에 따른 하지 근력 결과는 <표 2>와 같다.

2. 퍼포먼스(Performance)

1) 순발력(Power)

One-way ANOVA를 실시한 결과 순발력에서 집단-간 유의한 차이가 나타났다(p=.024). 사 후 검증결과 SS 집단보다 DS 집단이 13.18% 유의하게 높았다(p=.025). SS와 PNF를 분석한 결과 SS 집단보다 PNF 집단이 5.11% 높은 증감률을 보였지만, 유의한 차이는 나타나지 않 았다(p=.538). DS와 PNF를 분석한 결과 PNF 집단보다 DS 집단이 7.68% 높은 증감률을 보였 지만, 유의한 차이는 나타나지 않았다. 이상의 결과를 종합해 보면 SS와 PNF보다 DS가 높은 증감률을 나타낸 것을 확인할 수 있었으며, DS가 순발력에 효과적인 것을 확인할 수 있었다. 중학교 축구 선수들의 스트레칭 유형에 따른 순발력 결과는 <표 3>과 같다.

2) **민첩성**(Agility)

One-way ANOVA를 실시한 결과 민첩성에서 집단-간 유의한 차이가 나타났다(p=.024). 사 후검증 결과 SS 집단보다 PNF 집단이 6.15% 유의하게 감소하였다(p=.027). SS와 DS를 분석 한 결과 SS 집단보다 DS 집단이 3.91% 감소하였지만, 유의한 차이는 나타나지 않았다 (p=.216). DS와 PNF를 분석한 결과 DS 집단보다 PNF 집단이 2.33% 감소율을 보였지만, 유 의한 차이는 나타나지 않았다(p=.223). 이상의 결과를 종합해 보면 SS와 DS보다 PNF가 더 높은 감소율을 나타낸 것을 확인할 수 있었으며, PNF가 민첩성에 효과적인 것을 확인할 수 있었다. 중학교 축구 선수들의 스트레칭 유형에 따른 순발력 결과는 <표 3>과 같다.

3) 스프린트(Sprint)

One-way ANOVA를 실시한 결과 스프린트(10m, 20m)에서 집단-간 유의한 차이가 나타났다(p=.001, p=.002). 사후검증 결과 10m와 20m에서 SS 집단보다 DS 집단이 9.77%, 9.35% 유의하게 감소하였다(p=.002, p=.003). SS와 PNF를 분석한 결과 10m와 20m에서 SS 집단보다 PNF 집단이 0.47%, 1.39% 낮은 감소율을 보였지만, 유의한 차이는 나타나지 않았다(p=.937, p=.739). DS와 PNF를 분석한 결과 10m와 20m에서 PNF 집단보다 DS 집단이 9.35%, 6.50% 유의하게 감소하였다(p=.003, p=.019). 이상의 결과를 종합해 보면 SS와 PNF보다 DS가 더높은 감소율을 나타낸 것을 확인할 수 있었으며, DS가 스프린트(10m, 20m)에 효과적인 것을 확인할 수 있었다. 중학교 축구 선수들의 스트레칭 유형에 따른 순발력 결과는 <표 3>과 같다.

4) 슈팅 속도(Shooting Speed)

One-way ANOVA를 실시한 결과 수팅 속도에서 집단-간 유의한 차이가 나타났다(p=.002) 사후검증 결과 SS 집단보다 DS 집단이 11.41% 유의하게 증가하였다(p=.002). SS와 PNF를 분석한 결과 SS 집단보다 PNF 집단이 5.59% 높은 증감률을 보였지만, 유의한 차이는 나타나지 않았다(p=.178). DS와 PNF를 분석한 결과 PNF 집단보다 DS 집단이 5.51% 높은 증감률을 보였지만, 유의한 차이는 나타나지 않았다(p=.156). 이상의 결과를 종합해 보면 SS와 PNF보다 DS가 더 높은 증감률을 나타낸 것을 확인할 수 있었으며, DS가 슈팅 속도에 효과적인 것을 확인할 수 있었다. 중학교 축구 선수들의 스트레칭 유형에 따른 순발력 결과는 <표 3>과 같다.

표 2. 하지 근력

	SS ^a	DS^b	PNF ^c	p	Post-hoc
Ext_L	345.38±55.95	400.50±40.69	361.66±44.79	.043	a <b< td=""></b<>
Ext_R	360.11±41.84	408.48±41.00	375.26±36.96	.034	a <b< td=""></b<>
Flex_L	251.96±30.82	297.73±35.14	268.26±28.43	.011	a <b< td=""></b<>
Flex_R	266.92±31.25	308.66±25.48	274.45±27.60	.006	a <b< td=""></b<>

SS: Static stretching, DS: Dynamic stretching PNF: Proprioceptive Neuromuscular Facilitation, Ext: Extension, Flex: Flexion, L: Left, R: Right

표 3. 퍼포먼스

	SS ^a	DS^{b}	PNF ^c	p	Post-hoc
Power	48.71±3.63	55.13±5.87	51.20±5.05	.024	a <b< td=""></b<>
Agility	10.73±0.35	10.31±0.48	10.07±0.66	.025	a <c< td=""></c<>
10m	2.15±0.13	1.94±0.11	2.14±0.13	.001	a,c <b< td=""></b<>
20m	3.59±0.19	3.31±0.16	3.54±0.15	.002	a,c <b< td=""></b<>
Shooting speed	89.40±6.15	99.60±6.22	94.40±5.02	.002	a <b< td=""></b<>

SS: Static stretching, DS: Dynamic stretching PNF: Proprioceptive Neuromuscular Facilitation

IV. 논의 및 결론

본 연구는 스트레칭 유형이 중학교 축구 선수들의 하지 근력 및 퍼포먼스(순발력, 민첩성, 스프린트, 슈팅 속도)에 미치는 급성효과를 평가하였다. 주요 결과를 살펴보면, DS가 SS 및 PNF보다 하지 근력, 순발력, 그리고 스프린트(10m, 20m) 에서 더 나은 효과를 보였으며, PNF 는 SS보다 민첩성에서 유의미한 개선을 보였다. 본 연구의 결과를 토대로 다음과 같이 논의하 고자 한다.

1. 논의

1) 하지 근력

하지 근력은 축구 선수들의 스프린트, 방향 전환, 태클, 점프, 슈팅, 그리고 패스 등과 같은 특정 활동을 수행하기 위해서 필수적인 요소이다(Beato, Young, Stiff, & Coratella, 2021). 또한, 하지 근력의 향상은 힘줄과 인대의 이동성 및 근육의 단면적이 증가하여 부상을 예방할 수 있 다(Jullien et al., 2008). 이러한 이유로 하지 근력을 평가하였으며, 본 연구에서 스트레칭 유형 에 따른 하지 근력을 조사한 결과 SS 집단과 DS 집단-간에 유의한 차이가 나타났다. 하지만, DS 집단과 PNF 집단-간에는 유의한 차이가 나타나지 않았다. 이러한 결과는 Sekir, Arabaci, Akova와 Kadagan(2010), Miyahara, Naito, Ogura, Katamoto와 Aoki(2013)의 연구 결과와 일치하 며, DS가 근육 온도 상승과 신경근 기능 개선을 통해 Post-Activation Potentiation(PAP) 효과를 유도한 것으로 해석된다. Bishop(2003)은 DS 후 근육 온도 상승으로 인해 근육과 관절의 경직 감소, 신경 수용체의 민감도 증가 및 신경 자극 전달 속도 증가, 힘-속도 관계 변화, 그리고 글 리코겐 분해와 해당 분해 및 고에너지 인산 분해를 통해 근육의 성능에 긍정적인 영향을 미친 다고 하였다. 또 다른 메커니즘은 PAP이다. PAP는 컨디셔닝 수축 활동 후 근육이 힘을 생성하 는 효율성이 증가하는 것으로 정의한다. DS 후 근력의 향상은 신경근 기능의 향상으로 인해 발생하며, 이는 DS가 PAP 효과가 있음을 암시한다고 보고하였다(Miyahara et al., 2013). 본 연 구에서는 근육 온도를 직접 측정하지 않았지만 DS 후 하지 근력 측정은 이전 연구의 제안을 뒷받침하며, 온도 증가 또는 PAP로 인한 운동 단위 활성화 증가로 인해 발생하였음을 시사한 다. 반면, 본 연구에서는 SS 후 하지 근력이 감소하였다. 이는 Sekir et al.(2010), Nakamura et al.(2022)의 연구와 일치한다. 또한, Nelson et al.(2001)은 SS가 근력이 더 높은 선수들에게 더 큰 감소를 유발한다고 보고하였다. 이는 대상자들이 경기 전 충분히 높은 근력을 보유하고 있 었던 것으로 추정된다. SS 후 하지 근력이 감소한 이유는 SS는 근방추 민감도 감소와 운동 뉴 런 풀 흥분성 억제와 같은 신경 요인으로 인해 하지 근력을 저하시킨 것으로 판단된다(Nelson et al., 2001). 또한, Fowles et al.(2000)은 스트레칭으로 인한 신경 추진력 감소는 근력 감소의 일부분을 차지한다고 하였다. 이를 뒷받침하는 근거로 Sekir et al.(2010)은 SS 후 근활성도를 조사한 결과 유의미한 감소가 나타났다. 이는 SS 후 근방추의 민감도가 감소하면서 근방추 내 섬유의 구심 활동도 감소하여 최종적으로 신경 구동 감소로 인해 근력이 감소한다고 하였다. 이러한 결과는 SS가 주로 부상 예방을 위한 워밍업 방식으로 적합하나(Behm et al., 2016), 경 기력 향상에는 제한적일 수 있음을 시사한다. 또한, Miyahara et al,(2013)은 SS와 PNF 후 최대 자발적 수축을 조사한 결과 PNF에서 SS와 유사한 감소를 보고하였다. 본 연구에서도 DS 집단 보다 PNF 집단이 하지 근력이 감소하였지만, SS에 비해서 감소한 %가 낮은 것을 확인할 수 있었다. 이는 PNF도 SS처럼 골지건 기관에서 발생하는 자가 억제와 상호 억제를 통해 늘어난 근육을 제어하는 알파-운동 뉴런 풀의 흥분성의 감소를 보고하였다. 하지만 SS에 비해서 감소 한 %가 낮은 이유는 PNF 중에 생성되는 근수축으로 인해 SS보다는 높은 수준의 신경근 활동 을 생성할 수 있기 때문이라고 보고하였다(Miyahara et al., 2013). 이러한 결과는 DS가 하지 근 력에 긍정적인 영향을 미치며, SS와 PNF는 근력 감소와 관련이 있음을 시사한다. 본 연구의 제한점은 대상자가 10명으로 표본 크기가 작아 결과의 일반화에 한계점이 있으며, 프로그램의 장기적 효과를 평가하지 못 했다. 향 후 연구에서는 더 많은 대상자와 함께 프로그램의 장기적 인 효과를 평가하는 연구가 필요하다.

2) 퍼포먼스

본 연구에서는 퍼포먼스를 평가하기 위해 순발력, 민첩성, 스피드, 그리고 슈팅 속도를 측정하였다. 그 결과 순발력과 슈팅 속도에서 SS 집단과 DS 집단-간에 유의한 차이가 나타났으며, 민첩성에서는 SS 집단과 PNF 집단-간에 유의한 차이가 나타났다. 또한, 스피드에서는 DS 집단과 SS와 PNF 집단-간에 유의한 차이가 나타났다. 이러한 결과는 Hough, Ross와 Howatson (2009), Kabesova, Kabesova, Trantova, Heidler와 Cerna(2019)의 연구 결과와 일치하는데 SS와 PNF 후 근력을 감소시켜 순발력을 감소시킨다고 보고하였다. 반면, DS 후 순발력의 향상은 신경근 기능을 향상시켜 급성 변화를 유도한다. 이는 변화된 신경근 기능이 운동 단위 활성화를

촉진하기 위해 모집된 운동 단위당 활성 뉴런 수가 증가했음을 보고 하였으며, PAP를 유도하 여 근력이 증가한다고 보고하였다(Hough et al., 2009). 또한, 증가한 근력이 슈팅 속도에도 영 향을 미쳤을 것이라 생각된다. 이를 뒷받침하는 근거로 Young과 Rath(2011)은 하지 신전 근력 이 슈팅 능력과 상관관계를 보고하였으며, 하지 근력의 향상은 슈팅의 발차기 단계에서 폭발 적인 스윙 동작으로 인해 슈팅 능력의 향상을 보고하였다(Manolopulos, Katis, Manolopoulos, Kalapotharakos, & Kellis, 2013). 이러한 이유로 본 연구에서 하지 근력이 낮은 SS와 PNF보다 DS가 슈팅 속도에 영향을 미쳤을 것이라 사료 된다. 또한, 본 연구의 민첩성에서 SS 집단과 PNF 잡단-간에 유의한 차이가 나타난 근거를 제시할 수 있다. Chatzopoulos, Galazoulas, Patikas 와 Kotzamanidis(2014)은 SS는 민첩성에 부정적인 영향을 미친다고 보고하였으며, PNF가 근건 단위 강성을 증가시켜 민첩성을 향상시킨다고 보고하였다(Malek et al., 2024). 또한, Jordan, Korgaokar, Faley와 Caputo는 DS와 PNF 모두 민첩성에 긍정적인 영향을 미치지만, 두 집단-간 에 유의한 차이는 없다고 보고 하였다. 이러한 이유로 본 연구에서 SS 집단과 PNF 집단-간에 유의한 차이가 나타났지만, PNF와 DS 집단-간에 유의한 차이가 나타나지 않았다고 생각된다. 마지막으로 스프린트는 Turki-Belkhiria et al.2014)의 연구와 상반되는 결과가 나타났다. Turki-Belkhiria et al.(2014)은 DS는 스프린트의 개선을 나타나지 않는다고 보고였지만, 본 연구 에서는 스프린트의 개선이 나타났다. 이러한 결과가 나타난 이유는 Malek et al.(2024), Zmijewski et al.(2020)은 SS와 PNF보다 DS가 스프린트 향상에 효과적이라고 보고하였다. DS 후 근육 온도의 증가로 근육 경직의 감소 및 무산소 파워를 향상시켰으며, PAP 효과로 인해 파워 향상한다고 보고하였다(Van Gelder, & Bartz, 2011). 이러한 결과는 DS가 순발력, 슈팅 속 도, 그리고 스프린트에 긍정적인 영향을 미치며, PNF는 민첩성에 긍정적인 영향을 미친다는 것을 확인하였다. 본 연구의 제한점은 대상자가 10명으로 표본 크기가 작아 결과의 일반화에 한계점이 있으며, 프로그램의 복합적인 효과를 확인하지 못하였다. 향후 연구에서는 더 많은 대상자와 함께 프로그램의 복합적인 효과를 평가하는 연구가 필요하다.

2. 결론

본 연구는 경기 전 스트레칭 유형에 따른 중학교 축구 선수들의 하지 근력 및 퍼포먼스에 미치는 급성효과를 평가하였다. 연구 결과, DS가 하지 근력, 순발력, 스프린트, 그리고 슈팅 속도에서 가장 효과적임을 확인하였으며, 민첩성에서는 PNF가 SS 보다 더 나은 효과를 보였 다. 이러한 결과는 경기 전 워밍업에서 SS를 제한하고 DS와 PNF를 적극 활용해야 함을 시 사하낟. 특히, DS는 경기력 향상과 부상 예방을 동시에 기대할 수 있는 효율적인 스트레칭 방법으로 제안될 수 있다. 향후 연구에서는 더 많은 대상자와 함께 스트레칭 프로그램의 복 합적 적용과 장기적 효과를 평가하는 연구가 필요하다.

참고문헌

- 김기진, 안나영, 홍창배, 고진호, 이소정, 박주식(2012). 프로축구선수의 포지션 별 생리적 특성 분석을 통한 체력 향상방안. **코칭능력개발지, 14**(1), 125-133.
- 김준영, 송기재, 박한수, 오재근, 윤진호(2024). 6 주간 신경근 훈련이 중학교 엘리트 남자 축구 선수의 하지 근력 및 동적 균형성에 미치는 영향. 한국스포츠학회지, 22(1), 829-842.
- 박병재, 김정훈(2020). 정적 및 동적 스트레칭에 의한 근관절기능, 근육표면온도 및 근신경전도율에 관한 비교 연구. 한국체육학회지, 59(2), 315-329.
- 윤균상, 전익성, 곽현미, 김정훈, 전찬복, 김정기, 이한준(2013). 12주 코어 안정화 운동 프로그램이 중학교 축구 선수들의 체력 및 경기기술에 미치는 영향. **코칭능력개발지, 15**(3), 205-213.
- 이용수, 박종수, 강덕모(2008). 정적, 동적, PNF 스트레칭이 축구선수의 슬관절 등속성 근력발현에 미치는 영향. 한국체육과학회지, 17(3), 687-698.
- 이용수, 하민수(2000). 청소년기 축구선수의 체격 및 체력요인별 발달 연구. **한국체육과학회지**, **9**(1),733-743.
- 이윤형(2021). **정리운동과 냉침수요법이 대학축구선수의 운동수행능력에 미치는 영향.** 미간행 석사학위논문, 한국체육대학교 대학원, 서울.
- 장원봉, 김준영, 홍예인, 윤진호. (2023). 유소년 축구선수들의 포지션별 등속성근기능 및 유·무산소 운동능력, 동적 균형능력 비교. **융합과 통섭, 6**(4), 95-105.
- 지무엽, 윤진호(2022). 대학 복싱선수들의 기초체력과 전문체력 변인간 상관관계 연구. **융합과 통섭**, **5**(3), 129-141.
- Augustsson, S. R., & Ageberg, E. (2017). Weaker lower extremity muscle strength predicts traumatic knee injury in youth female but not male athletes. *BMJ Open Sport & Exercise Medicine*, 3(1), e000222.
- Avela, J., Kyröläinen, H., & Komi, P. V. (1999). Altered reflex sensitivity after repeated and prolonged passive muscle stretching. *Journal of Applied Physiology*, 86(4), 1099-1442.
- Ayala, F., & Sainz de Baranda, P. (2010). Acute effect of stretching on sprint in honour division soccer players. *Int J Sports Sci, 18*, 1-12.
- Beato, M., Young, D., Stiff, A., & Coratella, G. (2021). Lower-limb muscle strength, anterior-posterior and inter-limb asymmetry in professional, elite academy and amateur soccer players. *Journal of Human Kinetics*, 77, 135–146.
- Behm, D. G., Bambury, A., Cahill, F., & Power, K. (2004). Effect of acute static stretching on force, balance, reaction time, and movement time. *Medicine & Science in Sports & Exercise*, 36(8), 1397-1402.

- Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Applied Physiology, Nutrition, and Metabolism, 41(1), 1-11.
- Bishop, D. (2003). Warm up I: Potential mechanisms and the effects of passive warm up on exercise performance. Sports Medicine, 33, 439-454.
- Chatzopoulos, D., Galazoulas, C., Patikas, D., & Kotzamanidis, C. (2014). Acute effects of static and dynamic stretching on balance, agility, reaction time and movement time. Journal of Sports Science & Medicine, 13(2), 403.
- Chaabene, H., Behm, D. G., Negra, Y., & Granacher, U. (2019). Acute effects of static stretching on muscle strength and power: An attempt to clarify previous caveats. Frontiers in Physiology, 10, 489981.
- Chaouachi, A., Castagna, C., Chtara, M., Brughelli, M., Turki, O., Galy, O., Chamari, K., & Behm, D. G. (2010). Effect of warm-ups involving static or dynamic stretching on agility, sprinting, and jumping performance in trained individuals. The Journal of Strength & Conditioning Research, 24(8), 2001-2011.
- Cometti, G., Maffiuletti, N. A., Pousson, M., Chatard, J.-C., & Maffulli, N. (2001). Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. International Journal of Sports Medicine, 22(01), 45-51.
- Ekblom, B. (1986). Applied physiology of soccer. Sports Medicine, 3, 50-60.
- Faigenbaum, A. D., Bellucci, M., Bernieri, A., Bakker, B., & Hoorens, K. (2005). Acute effects of different warm-up protocols on fitness performance in children. The Journal of Strength & Conditioning Research, 19(2), 376-381.
- Fowles, J. R., Sale, D. G., & MacDougall, J. D. (2000). Reduced strength after passive stretch of the human plantarflexors. Journal of Applied Physiology, 89(3), 1179-1188.
- Gabbett, T. J. (2016). The training-injury prevention paradox: Should athletes be training smarter and harder? British Journal of Sports Medicine, 50(5), 273-280.
- Hough, P. A., Ross, E. Z., & Howatson, G. (2009). Effects of dynamic and static stretching on vertical jump performance and electromyographic activity. The Journal of Strength & Conditioning Research, 23(2), 507-512.
- Jordan, J. B., Korgaokar, A. D., Farley, R. S., & Caputo, J. L. (2012). Acute effects of static and proprioceptive neuromuscular facilitation stretching on agility performance in elite youth soccer players. International Journal of Exercise Science, 5(2), 97-105.
- Judge, L. W., Avedesian, J. M., Bellar, D. M., Hoover, D. L., Craig, B. W., Langley, J., Nordmann, N., Schoeff, M. A., & Dickin, C. (2020). Pre-and post-activity stretching practices of collegiate

- soccer coaches in the united state. International Journal of Exercise Science, 13(6), 260-272.
- Jullien, H., Bisch, C., Largouët, N., Manouvrier, C., Carling, C. J., & Amiard, V. (2008). Does a short period of lower limb strength training improve performance in field-based tests of running and agility in young professional soccer players?. The Journal of Strength & Conditioning Research, 22(2), 404-411.
- Kabešová, H., Kabešová, J., Tarantová, N., Heidler, J., & Černá, L. (2019). The effects of the application of dynamic and PNF stretching on the explosive strength abilities of the lower limbs in warm-up in hockey and football athletes. *Trends in Sport Sciences*, 26(1), 33-39.
- Malek, N. F. A., Nadzalan, A. M., Tan, K., Nor Azmi, A. M., Krishnan Vasanthi, R., Pavlović, R., & Badau, A. (2024). The acute effect of dynamic vs. proprioceptive neuromuscular facilitation stretching on sprint and jump performance. *Journal of Functional Morphology and Kinesiology*, 9(1), 857-867.
- Mann, D. P., & Jones, M. T. (1999). Guidelines to the implementation of a dynamic stretching program. Strength & Conditioning Journal, 21(6), 53-55.
- Manolopoulos, E., Katis, A., Manolopoulos, K., Kalapotharakos, V., & Kellis, E. (2013). Effects of a 10-week resistance exercise program on soccer kick biomechanics and muscle strength. The Journal of Strength & Conditioning Research, 27(12), 3391-3401.
- McNair, P. J., & Stanley, S. N. (1996). Effect of passive stretching and jogging on the series elastic muscle stiffness and range of motion of the ankle joint. *British Journal of Sports Medicine*, 30(4), 313–317.
- McGowan, C. J., Pyne, D. B., Thompson, K. G., & Rattray, B. (2015). Warm-up strategies for sport and exercise: Mechanisms and applications. *Sports Medicine*, 45, 1523-1546.
- Mirkov, D., Nedeljkovic, A., Kukolj, M., Ugarkovic, D., & Jaric, S. (2008). Evaluation of the reliability of soccer-specific field tests. *The Journal of Strength & Conditioning Research*, 22(4), 1046-1050.
- Miyahara, Y., Naito, H., Ogura, Y., Katamoto, S., & Aoki, J. (2013). Effects of proprioceptive neuromuscular facilitation stretching and static stretching on maximal voluntary contraction. *The Journal of Strength & Conditioning Research*, 27(1), 195.
- Nelson, A. G., Guillory, I. K., Cornwell, A., & Kokkonen, J. (2001). Inhibition of maximal voluntary isokinetic torque production following stretching is velocity-specific. *The Journal of Strength* & Conditioning Research, 15(2), 241.
- Oliveira, L. P., Vieira, L. H., Aquino, R., Manechini, J. P., Santiago, P. R., & Puggina, E. F. (2018).

 Acute effects of active, ballistic, passive, and proprioceptive neuromuscular facilitation stretching on sprint and vertical jump performance in trained young soccer players. *The*

- Journal of Strength & Conditioning Research, 32(8), 2199-2208.
- Ollano, V. (2023). Physiological effects of a traditional active warm-up versus a passive warm-up during submaximal endurance exercise (Master's thesis, University of Nevada, Las Vegas).
- Patti, A., Giustino, V., Hirose, N., Messina, G., Cataldi, S., Grigoli, G., Marchese, A., Mule, G., Drid, P., Palma, A., & Bianco, A. (2022). Effects of an experimental short-time high-intensity warm-up on explosive muscle strength performance in soccer players: A pilot study. Frontiers in Physiology, 13, 984305.
- Secer, E., & Kaya, D. Ö. (2021). Comparison of immediate effects of foam rolling and dynamic stretching to only dynamic stretching on flexibility, balance, and agility in male soccer players. Journal of Sport Rehabilitation, 31(1), 10-16.
- Sekir, U., Arabaci, R., Akova, B., & Kadagan, S. M. (2010). Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes. Scandinavian Journal of Medicine & Science in Sports, 20(2), 268-281.
- Taleb-Beydokhti, I. (2014). Acute and chronic effects of static and dynamic stretching protocols on change of direction performance in handball players. Middle-East Journal of Scientific Research, 22(1), 33-38.
- Turki-Belkhiria, L., Chaouachi, A., Turki, O., Chtourou, H., Chtara, M., Chamari, K., Amri, M., & Behm, D. G. (2014). Eight weeks of dynamic stretching during warm-ups improves jump power but not repeated or single sprint performance. European Journal of Sport Science, *14*(1), 19-27.
- Van Gelder, L. H., & Bartz, S. D. (2011). The effect of acute stretching on agility performance. The Journal of Strength & Conditioning Research, 25(11), 3014-3021.
- Yildiz, M., & Mehmet, C. E. B. İ. (2024). Acute effect of proprioceptive neuromuscular facilitation-based warm-up on isokinetic strength, endurance and balance. Research Square, https://doi.org/10.21203/rs.3.rs-4678537/v1.
- Young, W. B., & Rath, D. A. (2011). Enhancing foot velocity in football kicking: The role of strength training. The Journal of Strength & Conditioning Research, 25(2), 561-566.
- Zaidi, S., Ahamad, A., Fatima, A., Ahmad, I., Malhotra, D., Al Muslem, W. H., Abdulaziz, S., & Nuhmani, S. (2023). Immediate and long-term effectiveness of proprioceptive neuromuscular facilitation and static stretching on joint range of motion, flexibility, and electromyographic activity of knee muscles in older adults. Journal of Clinical Medicine, 12(7), 2610
- Zmijewski, P., Lipinska, P., Czajkowska, A., Mróz, A., Kapuściński, P., & Mazurek, K. (2020). Acute effects of a static vs. a dynamic stretching warm-up on repeated-sprint performance in female handball players. Journal of Human kinetics, 72, 161.